Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,107 Bytes
e698a98 bff7fc0 e698a98 bff7fc0 a2999e2 bff7fc0 3ce1983 bff7fc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import os
import math
from dataclasses import dataclass
from pathlib import Path
import librosa
import torch
import perth
import pyloudnorm as ln
from safetensors.torch import load_file
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer
from .models.t3 import T3
from .models.s3tokenizer import S3_SR
from .models.s3gen import S3GEN_SR, S3Gen
from .models.tokenizers import EnTokenizer
from .models.voice_encoder import VoiceEncoder
from .models.t3.modules.cond_enc import T3Cond
from .models.t3.modules.t3_config import T3Config
from .models.s3gen.const import S3GEN_SIL
import logging
logger = logging.getLogger(__name__)
REPO_ID = "ResembleAI/chatterbox-turbo"
def punc_norm(text: str) -> str:
"""
Quick cleanup func for punctuation from LLMs or
containing chars not seen often in the dataset
"""
if len(text) == 0:
return "You need to add some text for me to talk."
# Capitalise first letter
if text[0].islower():
text = text[0].upper() + text[1:]
# Remove multiple space chars
text = " ".join(text.split())
# Replace uncommon/llm punc
punc_to_replace = [
("…", ", "),
(":", ","),
("—", "-"),
("–", "-"),
(" ,", ","),
("“", "\""),
("”", "\""),
("‘", "'"),
("’", "'"),
]
for old_char_sequence, new_char in punc_to_replace:
text = text.replace(old_char_sequence, new_char)
# Add full stop if no ending punc
text = text.rstrip(" ")
sentence_enders = {".", "!", "?", "-", ","}
if not any(text.endswith(p) for p in sentence_enders):
text += "."
return text
@dataclass
class Conditionals:
"""
Conditionals for T3 and S3Gen
- T3 conditionals:
- speaker_emb
- clap_emb
- cond_prompt_speech_tokens
- cond_prompt_speech_emb
- emotion_adv
- S3Gen conditionals:
- prompt_token
- prompt_token_len
- prompt_feat
- prompt_feat_len
- embedding
"""
t3: T3Cond
gen: dict
def to(self, device):
self.t3 = self.t3.to(device=device)
for k, v in self.gen.items():
if torch.is_tensor(v):
self.gen[k] = v.to(device=device)
return self
def save(self, fpath: Path):
arg_dict = dict(
t3=self.t3.__dict__,
gen=self.gen
)
torch.save(arg_dict, fpath)
@classmethod
def load(cls, fpath, map_location="cpu"):
if isinstance(map_location, str):
map_location = torch.device(map_location)
kwargs = torch.load(fpath, map_location=map_location, weights_only=True)
return cls(T3Cond(**kwargs['t3']), kwargs['gen'])
class ChatterboxTurboTTS:
ENC_COND_LEN = 15 * S3_SR
DEC_COND_LEN = 10 * S3GEN_SR
def __init__(
self,
t3: T3,
s3gen: S3Gen,
ve: VoiceEncoder,
tokenizer: EnTokenizer,
device: str,
conds: Conditionals = None,
):
self.sr = S3GEN_SR # sample rate of synthesized audio
self.t3 = t3
self.s3gen = s3gen
self.ve = ve
self.tokenizer = tokenizer
self.device = device
self.conds = conds
self.watermarker = perth.PerthImplicitWatermarker()
@classmethod
def from_local(cls, ckpt_dir, device) -> 'ChatterboxTurboTTS':
ckpt_dir = Path(ckpt_dir)
# Always load to CPU first for non-CUDA devices to handle CUDA-saved models
if device in ["cpu", "mps"]:
map_location = torch.device('cpu')
else:
map_location = None
ve = VoiceEncoder()
ve.load_state_dict(
load_file(ckpt_dir / "ve.safetensors")
)
ve.to(device).eval()
# Turbo specific hp
hp = T3Config(text_tokens_dict_size=50276)
hp.llama_config_name = "GPT2_medium"
hp.speech_tokens_dict_size = 6563
hp.input_pos_emb = None
hp.speech_cond_prompt_len = 375
hp.use_perceiver_resampler = False
hp.emotion_adv = False
t3 = T3(hp)
t3_state = load_file(ckpt_dir / "t3_turbo_v1.safetensors")
if "model" in t3_state.keys():
t3_state = t3_state["model"][0]
t3.load_state_dict(t3_state)
del t3.tfmr.wte
t3.to(device).eval()
s3gen = S3Gen(meanflow=True)
weights = load_file(ckpt_dir / "s3gen_meanflow.safetensors")
s3gen.load_state_dict(
weights, strict=True
)
s3gen.to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(ckpt_dir)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if len(tokenizer) != 50276:
print(f"WARNING: Tokenizer len {len(tokenizer)} != 50276")
conds = None
builtin_voice = ckpt_dir / "conds.pt"
if builtin_voice.exists():
conds = Conditionals.load(builtin_voice, map_location=map_location).to(device)
return cls(t3, s3gen, ve, tokenizer, device, conds=conds)
def to(self, device):
self.device = device
self.t3 = self.t3.to(device)
self.s3gen = self.s3gen.to(device)
self.ve = self.ve.to(device)
if self.conds is not None:
self.conds = self.conds.to(device)
return self
@classmethod
def from_pretrained(cls, device) -> 'ChatterboxTurboTTS':
# Check if MPS is available on macOS
if device == "mps" and not torch.backends.mps.is_available():
if not torch.backends.mps.is_built():
print("MPS not available because the current PyTorch install was not built with MPS enabled.")
else:
print("MPS not available because the current MacOS version is not 12.3+ and/or you do not have an MPS-enabled device on this machine.")
device = "cpu"
local_path = snapshot_download(
repo_id=REPO_ID,
token=os.getenv("HF_TOKEN") or True,
# Optional: Filter to download only what you need
allow_patterns=["*.safetensors", "*.json", "*.txt", "*.pt", "*.model"]
)
return cls.from_local(local_path, device)
def norm_loudness(self, wav, sr, target_lufs=-27):
try:
meter = ln.Meter(sr)
loudness = meter.integrated_loudness(wav)
gain_db = target_lufs - loudness
gain_linear = 10.0 ** (gain_db / 20.0)
if math.isfinite(gain_linear) and gain_linear > 0.0:
wav = wav * gain_linear
except Exception as e:
print(f"Warning: Error in norm_loudness, skipping: {e}")
return wav
def prepare_conditionals(self, wav_fpath, exaggeration=0.5, norm_loudness=True):
## Load and norm reference wav
s3gen_ref_wav, _sr = librosa.load(wav_fpath, sr=S3GEN_SR)
assert len(s3gen_ref_wav) / _sr > 5.0, "Audio prompt must be longer than 5 seconds!"
if norm_loudness:
s3gen_ref_wav = self.norm_loudness(s3gen_ref_wav, _sr)
ref_16k_wav = librosa.resample(s3gen_ref_wav, orig_sr=S3GEN_SR, target_sr=S3_SR)
s3gen_ref_wav = s3gen_ref_wav[:self.DEC_COND_LEN]
s3gen_ref_dict = self.s3gen.embed_ref(s3gen_ref_wav, S3GEN_SR, device=self.device)
# Speech cond prompt tokens
if plen := self.t3.hp.speech_cond_prompt_len:
s3_tokzr = self.s3gen.tokenizer
t3_cond_prompt_tokens, _ = s3_tokzr.forward([ref_16k_wav[:self.ENC_COND_LEN]], max_len=plen)
t3_cond_prompt_tokens = torch.atleast_2d(t3_cond_prompt_tokens).to(self.device)
# Voice-encoder speaker embedding
ve_embed = torch.from_numpy(self.ve.embeds_from_wavs([ref_16k_wav], sample_rate=S3_SR))
ve_embed = ve_embed.mean(axis=0, keepdim=True).to(self.device)
t3_cond = T3Cond(
speaker_emb=ve_embed,
cond_prompt_speech_tokens=t3_cond_prompt_tokens,
emotion_adv=exaggeration * torch.ones(1, 1, 1),
).to(device=self.device)
self.conds = Conditionals(t3_cond, s3gen_ref_dict)
def generate(
self,
text,
repetition_penalty=1.2,
min_p=0.00,
top_p=0.95,
audio_prompt_path=None,
exaggeration=0.0,
cfg_weight=0.0,
temperature=0.8,
top_k=1000,
norm_loudness=True,
):
if audio_prompt_path:
self.prepare_conditionals(audio_prompt_path, exaggeration=exaggeration, norm_loudness=norm_loudness)
else:
assert self.conds is not None, "Please `prepare_conditionals` first or specify `audio_prompt_path`"
if cfg_weight > 0.0 or exaggeration > 0.0 or min_p > 0.0:
logger.warning("CFG, min_p and exaggeration are not supported by Turbo version and will be ignored.")
# Norm and tokenize text
text = punc_norm(text)
text_tokens = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
text_tokens = text_tokens.input_ids.to(self.device)
speech_tokens = self.t3.inference_turbo(
t3_cond=self.conds.t3,
text_tokens=text_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
# Remove OOV tokens and add silence to end
speech_tokens = speech_tokens[speech_tokens < 6561]
speech_tokens = speech_tokens.to(self.device)
silence = torch.tensor([S3GEN_SIL, S3GEN_SIL, S3GEN_SIL]).long().to(self.device)
speech_tokens = torch.cat([speech_tokens, silence])
wav, _ = self.s3gen.inference(
speech_tokens=speech_tokens,
ref_dict=self.conds.gen,
n_cfm_timesteps=2,
)
wav = wav.squeeze(0).detach().cpu().numpy()
watermarked_wav = self.watermarker.apply_watermark(wav, sample_rate=self.sr)
return torch.from_numpy(watermarked_wav).unsqueeze(0)
|