Spaces:
Running
on
Zero
Running
on
Zero
Update chatterbox/tts_turbo.py
Browse files- chatterbox/tts_turbo.py +153 -296
chatterbox/tts_turbo.py
CHANGED
|
@@ -1,305 +1,162 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
-
from dataclasses import dataclass
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
|
| 6 |
-
import librosa
|
| 7 |
import torch
|
| 8 |
-
import
|
| 9 |
-
import
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
#
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
sentence_enders = {".", "!", "?", "-", ","}
|
| 62 |
-
if not any(text.endswith(p) for p in sentence_enders):
|
| 63 |
-
text += "."
|
| 64 |
-
|
| 65 |
-
return text
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
@dataclass
|
| 69 |
-
class Conditionals:
|
| 70 |
-
"""
|
| 71 |
-
Conditionals for T3 and S3Gen
|
| 72 |
-
- T3 conditionals:
|
| 73 |
-
- speaker_emb
|
| 74 |
-
- clap_emb
|
| 75 |
-
- cond_prompt_speech_tokens
|
| 76 |
-
- cond_prompt_speech_emb
|
| 77 |
-
- emotion_adv
|
| 78 |
-
- S3Gen conditionals:
|
| 79 |
-
- prompt_token
|
| 80 |
-
- prompt_token_len
|
| 81 |
-
- prompt_feat
|
| 82 |
-
- prompt_feat_len
|
| 83 |
-
- embedding
|
| 84 |
-
"""
|
| 85 |
-
t3: T3Cond
|
| 86 |
-
gen: dict
|
| 87 |
-
|
| 88 |
-
def to(self, device):
|
| 89 |
-
self.t3 = self.t3.to(device=device)
|
| 90 |
-
for k, v in self.gen.items():
|
| 91 |
-
if torch.is_tensor(v):
|
| 92 |
-
self.gen[k] = v.to(device=device)
|
| 93 |
-
return self
|
| 94 |
-
|
| 95 |
-
def save(self, fpath: Path):
|
| 96 |
-
arg_dict = dict(
|
| 97 |
-
t3=self.t3.__dict__,
|
| 98 |
-
gen=self.gen
|
| 99 |
-
)
|
| 100 |
-
torch.save(arg_dict, fpath)
|
| 101 |
-
|
| 102 |
-
@classmethod
|
| 103 |
-
def load(cls, fpath, map_location="cpu"):
|
| 104 |
-
if isinstance(map_location, str):
|
| 105 |
-
map_location = torch.device(map_location)
|
| 106 |
-
kwargs = torch.load(fpath, map_location=map_location, weights_only=True)
|
| 107 |
-
return cls(T3Cond(**kwargs['t3']), kwargs['gen'])
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
class ChatterboxTurboTTS:
|
| 111 |
-
ENC_COND_LEN = 15 * S3_SR
|
| 112 |
-
DEC_COND_LEN = 10 * S3GEN_SR
|
| 113 |
-
|
| 114 |
-
def __init__(
|
| 115 |
-
self,
|
| 116 |
-
t3: T3,
|
| 117 |
-
s3gen: S3Gen,
|
| 118 |
-
ve: VoiceEncoder,
|
| 119 |
-
tokenizer: EnTokenizer,
|
| 120 |
-
device: str,
|
| 121 |
-
conds: Conditionals = None,
|
| 122 |
-
):
|
| 123 |
-
self.sr = S3GEN_SR # sample rate of synthesized audio
|
| 124 |
-
self.t3 = t3
|
| 125 |
-
self.s3gen = s3gen
|
| 126 |
-
self.ve = ve
|
| 127 |
-
self.tokenizer = tokenizer
|
| 128 |
-
self.device = device
|
| 129 |
-
self.conds = conds
|
| 130 |
-
self.watermarker = perth.PerthImplicitWatermarker()
|
| 131 |
-
|
| 132 |
-
def to(self, device):
|
| 133 |
-
self.device = device
|
| 134 |
-
self.t3 = self.t3.to(device)
|
| 135 |
-
self.s3gen = self.s3gen.to(device)
|
| 136 |
-
self.ve = self.ve.to(device)
|
| 137 |
-
if self.conds is not None:
|
| 138 |
-
self.conds = self.conds.to(device)
|
| 139 |
-
return self
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
ckpt_dir = Path(ckpt_dir)
|
| 144 |
-
|
| 145 |
-
# Always load to CPU first for non-CUDA devices to handle CUDA-saved models
|
| 146 |
-
if device in ["cpu", "mps"]:
|
| 147 |
-
map_location = torch.device('cpu')
|
| 148 |
-
else:
|
| 149 |
-
map_location = None
|
| 150 |
-
|
| 151 |
-
ve = VoiceEncoder()
|
| 152 |
-
ve.load_state_dict(
|
| 153 |
-
load_file(ckpt_dir / "ve.safetensors")
|
| 154 |
-
)
|
| 155 |
-
ve.to(device).eval()
|
| 156 |
-
|
| 157 |
-
# Turbo specific hp
|
| 158 |
-
hp = T3Config(text_tokens_dict_size=50276)
|
| 159 |
-
hp.llama_config_name = "GPT2_medium"
|
| 160 |
-
hp.speech_tokens_dict_size = 6563
|
| 161 |
-
hp.input_pos_emb = None
|
| 162 |
-
hp.speech_cond_prompt_len = 375
|
| 163 |
-
hp.use_perceiver_resampler = False
|
| 164 |
-
hp.emotion_adv = False
|
| 165 |
-
|
| 166 |
-
t3 = T3(hp)
|
| 167 |
-
t3_state = load_file(ckpt_dir / "t3_turbo_v1.safetensors")
|
| 168 |
-
if "model" in t3_state.keys():
|
| 169 |
-
t3_state = t3_state["model"][0]
|
| 170 |
-
t3.load_state_dict(t3_state)
|
| 171 |
-
del t3.tfmr.wte
|
| 172 |
-
t3.to(device).eval()
|
| 173 |
-
|
| 174 |
-
s3gen = S3Gen(meanflow=True)
|
| 175 |
-
weights = load_file(ckpt_dir / "s3gen_meanflow.safetensors")
|
| 176 |
-
s3gen.load_state_dict(
|
| 177 |
-
weights, strict=True
|
| 178 |
-
)
|
| 179 |
-
s3gen.to(device).eval()
|
| 180 |
-
|
| 181 |
-
tokenizer = AutoTokenizer.from_pretrained(ckpt_dir)
|
| 182 |
-
if tokenizer.pad_token is None:
|
| 183 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 184 |
-
if len(tokenizer) != 50276:
|
| 185 |
-
print(f"WARNING: Tokenizer len {len(tokenizer)} != 50276")
|
| 186 |
-
|
| 187 |
-
conds = None
|
| 188 |
-
builtin_voice = ckpt_dir / "conds.pt"
|
| 189 |
-
if builtin_voice.exists():
|
| 190 |
-
conds = Conditionals.load(builtin_voice, map_location=map_location).to(device)
|
| 191 |
-
|
| 192 |
-
return cls(t3, s3gen, ve, tokenizer, device, conds=conds)
|
| 193 |
-
|
| 194 |
-
@classmethod
|
| 195 |
-
def from_pretrained(cls, device) -> 'ChatterboxTurboTTS':
|
| 196 |
-
# Check if MPS is available on macOS
|
| 197 |
-
if device == "mps" and not torch.backends.mps.is_available():
|
| 198 |
-
if not torch.backends.mps.is_built():
|
| 199 |
-
print("MPS not available because the current PyTorch install was not built with MPS enabled.")
|
| 200 |
-
else:
|
| 201 |
-
print("MPS not available because the current MacOS version is not 12.3+ and/or you do not have an MPS-enabled device on this machine.")
|
| 202 |
-
device = "cpu"
|
| 203 |
-
|
| 204 |
-
local_path = snapshot_download(
|
| 205 |
-
repo_id=REPO_ID,
|
| 206 |
-
token=os.getenv("HF_TOKEN") or True,
|
| 207 |
-
# Optional: Filter to download only what you need
|
| 208 |
-
allow_patterns=["*.safetensors", "*.json", "*.txt", "*.pt", "*.model"]
|
| 209 |
-
)
|
| 210 |
-
|
| 211 |
-
return cls.from_local(local_path, device)
|
| 212 |
-
|
| 213 |
-
def norm_loudness(self, wav, sr, target_lufs=-27):
|
| 214 |
-
try:
|
| 215 |
-
meter = ln.Meter(sr)
|
| 216 |
-
loudness = meter.integrated_loudness(wav)
|
| 217 |
-
gain_db = target_lufs - loudness
|
| 218 |
-
gain_linear = 10.0 ** (gain_db / 20.0)
|
| 219 |
-
if math.isfinite(gain_linear) and gain_linear > 0.0:
|
| 220 |
-
wav = wav * gain_linear
|
| 221 |
-
except Exception as e:
|
| 222 |
-
print(f"Warning: Error in norm_loudness, skipping: {e}")
|
| 223 |
-
|
| 224 |
-
return wav
|
| 225 |
-
|
| 226 |
-
def prepare_conditionals(self, wav_fpath, exaggeration=0.5, norm_loudness=True):
|
| 227 |
-
## Load and norm reference wav
|
| 228 |
-
s3gen_ref_wav, _sr = librosa.load(wav_fpath, sr=S3GEN_SR)
|
| 229 |
-
|
| 230 |
-
assert len(s3gen_ref_wav) / _sr > 5.0, "Audio prompt must be longer than 5 seconds!"
|
| 231 |
-
|
| 232 |
-
if norm_loudness:
|
| 233 |
-
s3gen_ref_wav = self.norm_loudness(s3gen_ref_wav, _sr)
|
| 234 |
-
|
| 235 |
-
ref_16k_wav = librosa.resample(s3gen_ref_wav, orig_sr=S3GEN_SR, target_sr=S3_SR)
|
| 236 |
-
|
| 237 |
-
s3gen_ref_wav = s3gen_ref_wav[:self.DEC_COND_LEN]
|
| 238 |
-
s3gen_ref_dict = self.s3gen.embed_ref(s3gen_ref_wav, S3GEN_SR, device=self.device)
|
| 239 |
-
|
| 240 |
-
# Speech cond prompt tokens
|
| 241 |
-
if plen := self.t3.hp.speech_cond_prompt_len:
|
| 242 |
-
s3_tokzr = self.s3gen.tokenizer
|
| 243 |
-
t3_cond_prompt_tokens, _ = s3_tokzr.forward([ref_16k_wav[:self.ENC_COND_LEN]], max_len=plen)
|
| 244 |
-
t3_cond_prompt_tokens = torch.atleast_2d(t3_cond_prompt_tokens).to(self.device)
|
| 245 |
-
|
| 246 |
-
# Voice-encoder speaker embedding
|
| 247 |
-
ve_embed = torch.from_numpy(self.ve.embeds_from_wavs([ref_16k_wav], sample_rate=S3_SR))
|
| 248 |
-
ve_embed = ve_embed.mean(axis=0, keepdim=True).to(self.device)
|
| 249 |
-
|
| 250 |
-
t3_cond = T3Cond(
|
| 251 |
-
speaker_emb=ve_embed,
|
| 252 |
-
cond_prompt_speech_tokens=t3_cond_prompt_tokens,
|
| 253 |
-
emotion_adv=exaggeration * torch.ones(1, 1, 1),
|
| 254 |
-
).to(device=self.device)
|
| 255 |
-
self.conds = Conditionals(t3_cond, s3gen_ref_dict)
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
min_p=0.00,
|
| 262 |
-
top_p=0.95,
|
| 263 |
-
audio_prompt_path=None,
|
| 264 |
-
exaggeration=0.0,
|
| 265 |
-
cfg_weight=0.0,
|
| 266 |
-
temperature=0.8,
|
| 267 |
-
top_k=1000,
|
| 268 |
-
norm_loudness=True,
|
| 269 |
-
):
|
| 270 |
-
if audio_prompt_path:
|
| 271 |
-
self.prepare_conditionals(audio_prompt_path, exaggeration=exaggeration, norm_loudness=norm_loudness)
|
| 272 |
-
else:
|
| 273 |
-
assert self.conds is not None, "Please `prepare_conditionals` first or specify `audio_prompt_path`"
|
| 274 |
|
| 275 |
-
|
| 276 |
-
|
|
|
|
| 277 |
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
| 282 |
|
| 283 |
-
speech_tokens = self.t3.inference_turbo(
|
| 284 |
-
t3_cond=self.conds.t3,
|
| 285 |
-
text_tokens=text_tokens,
|
| 286 |
-
temperature=temperature,
|
| 287 |
-
top_k=top_k,
|
| 288 |
-
top_p=top_p,
|
| 289 |
-
repetition_penalty=repetition_penalty,
|
| 290 |
-
)
|
| 291 |
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
import os
|
| 3 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import spaces
|
| 7 |
+
from chatterbox.tts_turbo import ChatterboxTurboTTS
|
| 8 |
+
|
| 9 |
+
# --- 1. FORCE CPU FOR GLOBAL LOADING ---
|
| 10 |
+
# ZeroGPU forbids CUDA during startup. We only move to CUDA inside the decorated function.
|
| 11 |
+
DEVICE = "cpu"
|
| 12 |
+
|
| 13 |
+
MODEL = None
|
| 14 |
+
|
| 15 |
+
EVENT_TAGS = [
|
| 16 |
+
"[clear throat]", "[sigh]", "[shush]", "[cough]", "[groan]",
|
| 17 |
+
"[sniff]", "[gasp]", "[chuckle]", "[laugh]"
|
| 18 |
+
]
|
| 19 |
+
|
| 20 |
+
CUSTOM_CSS = """
|
| 21 |
+
.tag-container {
|
| 22 |
+
display: flex !important;
|
| 23 |
+
flex-wrap: wrap !important;
|
| 24 |
+
gap: 8px !important;
|
| 25 |
+
margin-top: 5px !important;
|
| 26 |
+
margin-bottom: 10px !important;
|
| 27 |
+
border: none !important;
|
| 28 |
+
background: transparent !important;
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
.tag-btn {
|
| 32 |
+
min-width: fit-content !important;
|
| 33 |
+
width: auto !important;
|
| 34 |
+
height: 32px !important;
|
| 35 |
+
font-size: 13px !important;
|
| 36 |
+
background: #eef2ff !important;
|
| 37 |
+
border: 1px solid #c7d2fe !important;
|
| 38 |
+
color: #3730a3 !important;
|
| 39 |
+
border-radius: 6px !important;
|
| 40 |
+
padding: 0 10px !important;
|
| 41 |
+
margin: 0 !important;
|
| 42 |
+
box-shadow: none !important;
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
.tag-btn:hover {
|
| 46 |
+
background: #c7d2fe !important;
|
| 47 |
+
transform: translateY(-1px);
|
| 48 |
+
}
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
INSERT_TAG_JS = """
|
| 52 |
+
(tag_val, current_text) => {
|
| 53 |
+
const textarea = document.querySelector('#main_textbox textarea');
|
| 54 |
+
if (!textarea) return current_text + " " + tag_val;
|
| 55 |
+
|
| 56 |
+
const start = textarea.selectionStart;
|
| 57 |
+
const end = textarea.selectionEnd;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
let prefix = " ";
|
| 60 |
+
let suffix = " ";
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
if (start === 0) prefix = "";
|
| 63 |
+
else if (current_text[start - 1] === ' ') prefix = "";
|
| 64 |
+
|
| 65 |
+
if (end < current_text.length && current_text[end] === ' ') suffix = "";
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
return current_text.slice(0, start) + prefix + tag_val + suffix + current_text.slice(end);
|
| 68 |
+
}
|
| 69 |
+
"""
|
| 70 |
|
| 71 |
+
def set_seed(seed: int):
|
| 72 |
+
torch.manual_seed(seed)
|
| 73 |
+
torch.cuda.manual_seed(seed)
|
| 74 |
+
torch.cuda.manual_seed_all(seed)
|
| 75 |
+
random.seed(seed)
|
| 76 |
+
np.random.seed(seed)
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
def load_model():
|
| 80 |
+
global MODEL
|
| 81 |
+
print(f"Loading Chatterbox-Turbo on {DEVICE}...")
|
| 82 |
+
MODEL = ChatterboxTurboTTS.from_pretrained(DEVICE)
|
| 83 |
+
return MODEL
|
| 84 |
|
| 85 |
+
@spaces.GPU
|
| 86 |
+
def generate(
|
| 87 |
+
text,
|
| 88 |
+
audio_prompt_path,
|
| 89 |
+
temperature,
|
| 90 |
+
seed_num,
|
| 91 |
+
min_p,
|
| 92 |
+
top_p,
|
| 93 |
+
top_k,
|
| 94 |
+
repetition_penalty,
|
| 95 |
+
norm_loudness
|
| 96 |
+
):
|
| 97 |
+
global MODEL
|
| 98 |
+
# Reload if the worker lost the global state
|
| 99 |
+
if MODEL is None:
|
| 100 |
+
MODEL = ChatterboxTurboTTS.from_pretrained("cpu")
|
| 101 |
+
|
| 102 |
+
# --- MOVE TO GPU HERE ---
|
| 103 |
+
MODEL.to("cuda")
|
| 104 |
+
|
| 105 |
+
if seed_num != 0:
|
| 106 |
+
set_seed(int(seed_num))
|
| 107 |
+
|
| 108 |
+
wav = MODEL.generate(
|
| 109 |
+
text,
|
| 110 |
+
audio_prompt_path=audio_prompt_path,
|
| 111 |
+
temperature=temperature,
|
| 112 |
+
min_p=min_p,
|
| 113 |
+
top_p=top_p,
|
| 114 |
+
top_k=int(top_k),
|
| 115 |
+
repetition_penalty=repetition_penalty,
|
| 116 |
+
norm_loudness=norm_loudness,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
return (MODEL.sr, wav.squeeze(0).cpu().numpy())
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
with gr.Blocks(title="Chatterbox Turbo") as demo:
|
| 123 |
+
gr.Markdown("# ⚡ Chatterbox Turbo")
|
| 124 |
+
|
| 125 |
+
with gr.Row():
|
| 126 |
+
with gr.Column():
|
| 127 |
+
text = gr.Textbox(
|
| 128 |
+
value="Congratulations Miss Connor! [chuckle] Um anyway, we do have a new model in store. It's the SkyNet T-800 series and it's got basically everything. Including AI integration with ChatGPT and all that jazz. Would you like me to get some prices for you?",
|
| 129 |
+
label="Text to synthesize (max chars 300)",
|
| 130 |
+
max_lines=5,
|
| 131 |
+
elem_id="main_textbox"
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
with gr.Row(elem_classes=["tag-container"]):
|
| 135 |
+
for tag in EVENT_TAGS:
|
| 136 |
+
btn = gr.Button(tag, elem_classes=["tag-btn"])
|
| 137 |
+
btn.click(
|
| 138 |
+
fn=None,
|
| 139 |
+
inputs=[btn, text],
|
| 140 |
+
outputs=text,
|
| 141 |
+
js=INSERT_TAG_JS
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
ref_wav = gr.Audio(
|
| 145 |
+
sources=["upload", "microphone"],
|
| 146 |
+
type="filepath",
|
| 147 |
+
label="Reference Audio File",
|
| 148 |
+
value="https://storage.googleapis.com/chatterbox-demo-samples/prompts/female_random_podcast.wav"
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
run_btn = gr.Button("Generate ⚡", variant="primary")
|
| 152 |
+
|
| 153 |
+
with gr.Column():
|
| 154 |
+
audio_output = gr.Audio(label="Output Audio")
|
| 155 |
+
|
| 156 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 157 |
+
seed_num = gr.Number(value=0, label="Random seed (0 for random)")
|
| 158 |
+
temp = gr.Slider(0.05, 2.0, step=.05, label="Temperature", value=0.8)
|
| 159 |
+
top_p = gr.Slider(0.00, 1.00, step=0.01, label="Top P", value=0.95)
|
| 160 |
+
top_k = gr.Slider(0, 1000, step=10, label="Top K", value=1000)
|
| 161 |
+
repetition_penalty = gr.Slider(1.00, 2.00, step=0.05, label="Repetition Penalty", value=1.2)
|
| 162 |
+
min_p = gr.Slider(0.00, 1.00, step=0
|