ollieollie commited on
Commit
e698a98
·
1 Parent(s): b09dd06

init hf space commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +186 -0
  2. chatterbox/__init__.py +11 -0
  3. chatterbox/__pycache__/__init__.cpython-311.pyc +0 -0
  4. chatterbox/__pycache__/mtl_tts.cpython-311.pyc +0 -0
  5. chatterbox/__pycache__/tts.cpython-311.pyc +0 -0
  6. chatterbox/__pycache__/tts_turbo.cpython-311.pyc +0 -0
  7. chatterbox/__pycache__/vc.cpython-311.pyc +0 -0
  8. chatterbox/models/__init__.py +0 -0
  9. chatterbox/models/__pycache__/__init__.cpython-311.pyc +0 -0
  10. chatterbox/models/__pycache__/utils.cpython-311.pyc +0 -0
  11. chatterbox/models/s3gen/__init__.py +2 -0
  12. chatterbox/models/s3gen/__pycache__/__init__.cpython-311.pyc +0 -0
  13. chatterbox/models/s3gen/__pycache__/configs.cpython-311.pyc +0 -0
  14. chatterbox/models/s3gen/__pycache__/const.cpython-311.pyc +0 -0
  15. chatterbox/models/s3gen/__pycache__/decoder.cpython-311.pyc +0 -0
  16. chatterbox/models/s3gen/__pycache__/f0_predictor.cpython-311.pyc +0 -0
  17. chatterbox/models/s3gen/__pycache__/flow.cpython-311.pyc +0 -0
  18. chatterbox/models/s3gen/__pycache__/flow_matching.cpython-311.pyc +0 -0
  19. chatterbox/models/s3gen/__pycache__/hifigan.cpython-311.pyc +0 -0
  20. chatterbox/models/s3gen/__pycache__/s3gen.cpython-311.pyc +0 -0
  21. chatterbox/models/s3gen/__pycache__/xvector.cpython-311.pyc +0 -0
  22. chatterbox/models/s3gen/configs.py +10 -0
  23. chatterbox/models/s3gen/const.py +2 -0
  24. chatterbox/models/s3gen/decoder.py +333 -0
  25. chatterbox/models/s3gen/f0_predictor.py +55 -0
  26. chatterbox/models/s3gen/flow.py +198 -0
  27. chatterbox/models/s3gen/flow_matching.py +246 -0
  28. chatterbox/models/s3gen/hifigan.py +474 -0
  29. chatterbox/models/s3gen/matcha/__pycache__/decoder.cpython-311.pyc +0 -0
  30. chatterbox/models/s3gen/matcha/__pycache__/flow_matching.cpython-311.pyc +0 -0
  31. chatterbox/models/s3gen/matcha/__pycache__/transformer.cpython-311.pyc +0 -0
  32. chatterbox/models/s3gen/matcha/decoder.py +443 -0
  33. chatterbox/models/s3gen/matcha/flow_matching.py +129 -0
  34. chatterbox/models/s3gen/matcha/text_encoder.py +413 -0
  35. chatterbox/models/s3gen/matcha/transformer.py +316 -0
  36. chatterbox/models/s3gen/s3gen.py +362 -0
  37. chatterbox/models/s3gen/transformer/__init__.py +0 -0
  38. chatterbox/models/s3gen/transformer/__pycache__/__init__.cpython-311.pyc +0 -0
  39. chatterbox/models/s3gen/transformer/__pycache__/activation.cpython-311.pyc +0 -0
  40. chatterbox/models/s3gen/transformer/__pycache__/attention.cpython-311.pyc +0 -0
  41. chatterbox/models/s3gen/transformer/__pycache__/convolution.cpython-311.pyc +0 -0
  42. chatterbox/models/s3gen/transformer/__pycache__/embedding.cpython-311.pyc +0 -0
  43. chatterbox/models/s3gen/transformer/__pycache__/encoder_layer.cpython-311.pyc +0 -0
  44. chatterbox/models/s3gen/transformer/__pycache__/positionwise_feed_forward.cpython-311.pyc +0 -0
  45. chatterbox/models/s3gen/transformer/__pycache__/subsampling.cpython-311.pyc +0 -0
  46. chatterbox/models/s3gen/transformer/__pycache__/upsample_encoder.cpython-311.pyc +0 -0
  47. chatterbox/models/s3gen/transformer/activation.py +84 -0
  48. chatterbox/models/s3gen/transformer/attention.py +330 -0
  49. chatterbox/models/s3gen/transformer/convolution.py +145 -0
  50. chatterbox/models/s3gen/transformer/embedding.py +294 -0
app.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import numpy as np
3
+ import torch
4
+ import gradio as gr
5
+ from chatterbox.tts_turbo import ChatterboxTurboTTS
6
+
7
+ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
8
+
9
+ EVENT_TAGS = [
10
+ "[clear throat]", "[sigh]", "[shush]", "[cough]", "[groan]",
11
+ "[sniff]", "[gasp]", "[chuckle]", "[laugh]"
12
+ ]
13
+
14
+ # --- REFINED CSS ---
15
+ # 1. tag-container: Forces the row to wrap items instead of scrolling. Removes borders/backgrounds.
16
+ # 2. tag-btn: Sets the specific look (indigo theme) and stops them from stretching.
17
+ CUSTOM_CSS = """
18
+ .tag-container {
19
+ display: flex !important;
20
+ flex-wrap: wrap !important; /* This fixes the one-per-line issue */
21
+ gap: 8px !important;
22
+ margin-top: 5px !important;
23
+ margin-bottom: 10px !important;
24
+ border: none !important;
25
+ background: transparent !important;
26
+ }
27
+
28
+ .tag-btn {
29
+ min-width: fit-content !important;
30
+ width: auto !important;
31
+ height: 32px !important;
32
+ font-size: 13px !important;
33
+ background: #eef2ff !important;
34
+ border: 1px solid #c7d2fe !important;
35
+ color: #3730a3 !important;
36
+ border-radius: 6px !important;
37
+ padding: 0 10px !important;
38
+ margin: 0 !important;
39
+ box-shadow: none !important;
40
+ }
41
+
42
+ .tag-btn:hover {
43
+ background: #c7d2fe !important;
44
+ transform: translateY(-1px);
45
+ }
46
+ """
47
+
48
+ INSERT_TAG_JS = """
49
+ (tag_val, current_text) => {
50
+ const textarea = document.querySelector('#main_textbox textarea');
51
+ if (!textarea) return current_text + " " + tag_val;
52
+
53
+ const start = textarea.selectionStart;
54
+ const end = textarea.selectionEnd;
55
+
56
+ let prefix = " ";
57
+ let suffix = " ";
58
+
59
+ if (start === 0) prefix = "";
60
+ else if (current_text[start - 1] === ' ') prefix = "";
61
+
62
+ if (end < current_text.length && current_text[end] === ' ') suffix = "";
63
+
64
+ return current_text.slice(0, start) + prefix + tag_val + suffix + current_text.slice(end);
65
+ }
66
+ """
67
+
68
+
69
+ def set_seed(seed: int):
70
+ torch.manual_seed(seed)
71
+ torch.cuda.manual_seed(seed)
72
+ torch.cuda.manual_seed_all(seed)
73
+ random.seed(seed)
74
+ np.random.seed(seed)
75
+
76
+
77
+ def load_model():
78
+ print(f"Loading Chatterbox-Turbo on {DEVICE}...")
79
+ model = ChatterboxTurboTTS.from_pretrained(DEVICE)
80
+ return model
81
+
82
+
83
+ def generate(
84
+ model,
85
+ text,
86
+ audio_prompt_path,
87
+ temperature,
88
+ seed_num,
89
+ min_p,
90
+ top_p,
91
+ top_k,
92
+ repetition_penalty,
93
+ norm_loudness
94
+ ):
95
+ if model is None:
96
+ model = ChatterboxTurboTTS.from_pretrained(DEVICE)
97
+
98
+ if seed_num != 0:
99
+ set_seed(int(seed_num))
100
+
101
+ wav = model.generate(
102
+ text,
103
+ audio_prompt_path=audio_prompt_path,
104
+ temperature=temperature,
105
+ min_p=min_p,
106
+ top_p=top_p,
107
+ top_k=int(top_k),
108
+ repetition_penalty=repetition_penalty,
109
+ norm_loudness=norm_loudness,
110
+ )
111
+ return (model.sr, wav.squeeze(0).numpy())
112
+
113
+
114
+ with gr.Blocks(title="Chatterbox Turbo", css=CUSTOM_CSS) as demo:
115
+ gr.Markdown("# ⚡ Chatterbox Turbo")
116
+
117
+ model_state = gr.State(None)
118
+
119
+ with gr.Row():
120
+ with gr.Column():
121
+ text = gr.Textbox(
122
+ value="Oh, that's hilarious! [chuckle] Um anyway, we do have a new model in store. It's the SkyNet T-800 series and it's got basically everything. Including AI integration with ChatGPT and um all that jazz. Would you like me to get some prices for you?",
123
+ label="Text to synthesize (max chars 300)",
124
+ max_lines=5,
125
+ elem_id="main_textbox"
126
+ )
127
+
128
+ # --- Event Tags ---
129
+ # Switched back to Row, but applied specific CSS to force wrapping
130
+ with gr.Row(elem_classes=["tag-container"]):
131
+ for tag in EVENT_TAGS:
132
+ # elem_classes targets the button specifically
133
+ btn = gr.Button(tag, elem_classes=["tag-btn"])
134
+
135
+ btn.click(
136
+ fn=None,
137
+ inputs=[btn, text],
138
+ outputs=text,
139
+ js=INSERT_TAG_JS
140
+ )
141
+
142
+ ref_wav = gr.Audio(
143
+ sources=["upload", "microphone"],
144
+ type="filepath",
145
+ label="Reference Audio File",
146
+ value="https://storage.googleapis.com/chatterbox-demo-samples/prompts/female_random_podcast.wav"
147
+ )
148
+
149
+ with gr.Accordion("Advanced Options", open=False):
150
+ seed_num = gr.Number(value=0, label="Random seed (0 for random)")
151
+ temp = gr.Slider(0.05, 2.0, step=.05, label="Temperature", value=0.8)
152
+ top_p = gr.Slider(0.00, 1.00, step=0.01, label="Top P", value=0.95)
153
+ top_k = gr.Slider(0, 1000, step=10, label="Top K", value=1000)
154
+ repetition_penalty = gr.Slider(1.00, 2.00, step=0.05, label="Repetition Penalty", value=1.2)
155
+ min_p = gr.Slider(0.00, 1.00, step=0.01, label="Min P (Set to 0 to disable)", value=0.00)
156
+ norm_loudness = gr.Checkbox(value=True, label="Normalize Loudness (Match prompt volume)")
157
+
158
+ run_btn = gr.Button("Generate ⚡", variant="primary")
159
+
160
+ with gr.Column():
161
+ audio_output = gr.Audio(label="Output Audio")
162
+
163
+ demo.load(fn=load_model, inputs=[], outputs=model_state)
164
+
165
+ run_btn.click(
166
+ fn=generate,
167
+ inputs=[
168
+ model_state,
169
+ text,
170
+ ref_wav,
171
+ temp,
172
+ seed_num,
173
+ min_p,
174
+ top_p,
175
+ top_k,
176
+ repetition_penalty,
177
+ norm_loudness,
178
+ ],
179
+ outputs=audio_output,
180
+ )
181
+
182
+ if __name__ == "__main__":
183
+ demo.queue(
184
+ max_size=50,
185
+ default_concurrency_limit=1,
186
+ ).launch(share=True)
chatterbox/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ try:
2
+ from importlib.metadata import version
3
+ except ImportError:
4
+ from importlib_metadata import version # For Python <3.8
5
+
6
+ __version__ = version("chatterbox-tts")
7
+
8
+
9
+ from .tts import ChatterboxTTS
10
+ from .vc import ChatterboxVC
11
+ from .mtl_tts import ChatterboxMultilingualTTS, SUPPORTED_LANGUAGES
chatterbox/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (678 Bytes). View file
 
chatterbox/__pycache__/mtl_tts.cpython-311.pyc ADDED
Binary file (14.9 kB). View file
 
chatterbox/__pycache__/tts.cpython-311.pyc ADDED
Binary file (13.7 kB). View file
 
chatterbox/__pycache__/tts_turbo.cpython-311.pyc ADDED
Binary file (15.2 kB). View file
 
chatterbox/__pycache__/vc.cpython-311.pyc ADDED
Binary file (6.29 kB). View file
 
chatterbox/models/__init__.py ADDED
File without changes
chatterbox/models/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (182 Bytes). View file
 
chatterbox/models/__pycache__/utils.cpython-311.pyc ADDED
Binary file (768 Bytes). View file
 
chatterbox/models/s3gen/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .s3gen import S3Token2Wav as S3Gen
2
+ from .const import S3GEN_SR
chatterbox/models/s3gen/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (304 Bytes). View file
 
chatterbox/models/s3gen/__pycache__/configs.cpython-311.pyc ADDED
Binary file (464 Bytes). View file
 
chatterbox/models/s3gen/__pycache__/const.cpython-311.pyc ADDED
Binary file (225 Bytes). View file
 
chatterbox/models/s3gen/__pycache__/decoder.cpython-311.pyc ADDED
Binary file (17.7 kB). View file
 
chatterbox/models/s3gen/__pycache__/f0_predictor.cpython-311.pyc ADDED
Binary file (2.71 kB). View file
 
chatterbox/models/s3gen/__pycache__/flow.cpython-311.pyc ADDED
Binary file (10.1 kB). View file
 
chatterbox/models/s3gen/__pycache__/flow_matching.cpython-311.pyc ADDED
Binary file (12.3 kB). View file
 
chatterbox/models/s3gen/__pycache__/hifigan.cpython-311.pyc ADDED
Binary file (26.3 kB). View file
 
chatterbox/models/s3gen/__pycache__/s3gen.cpython-311.pyc ADDED
Binary file (15.4 kB). View file
 
chatterbox/models/s3gen/__pycache__/xvector.cpython-311.pyc ADDED
Binary file (24 kB). View file
 
chatterbox/models/s3gen/configs.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from ..utils import AttrDict
2
+
3
+ CFM_PARAMS = AttrDict({
4
+ "sigma_min": 1e-06,
5
+ "solver": "euler",
6
+ "t_scheduler": "cosine",
7
+ "training_cfg_rate": 0.2,
8
+ "inference_cfg_rate": 0.7,
9
+ "reg_loss_type": "l1"
10
+ })
chatterbox/models/s3gen/const.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ S3GEN_SR = 24000
2
+ S3GEN_SIL = 4299
chatterbox/models/s3gen/decoder.py ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import torch
15
+ import torch.nn as nn
16
+ import torch.nn.functional as F
17
+ from einops import pack, rearrange, repeat
18
+
19
+ from .utils.mask import add_optional_chunk_mask
20
+ from .matcha.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, \
21
+ TimestepEmbedding, Upsample1D
22
+ from .matcha.transformer import BasicTransformerBlock
23
+ from .utils.intmeanflow import get_intmeanflow_time_mixer
24
+
25
+
26
+ def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
27
+ assert mask.dtype == torch.bool
28
+ assert dtype in [torch.float32, torch.bfloat16, torch.float16]
29
+ mask = mask.to(dtype)
30
+ # attention mask bias
31
+ # NOTE(Mddct): torch.finfo jit issues
32
+ # chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
33
+ mask = (1.0 - mask) * -1.0e+10
34
+ return mask
35
+
36
+
37
+
38
+ class Transpose(torch.nn.Module):
39
+ def __init__(self, dim0: int, dim1: int):
40
+ super().__init__()
41
+ self.dim0 = dim0
42
+ self.dim1 = dim1
43
+
44
+ def forward(self, x: torch.Tensor):
45
+ x = torch.transpose(x, self.dim0, self.dim1)
46
+ return x
47
+
48
+
49
+ class CausalBlock1D(Block1D):
50
+ def __init__(self, dim: int, dim_out: int):
51
+ super(CausalBlock1D, self).__init__(dim, dim_out)
52
+ self.block = torch.nn.Sequential(
53
+ CausalConv1d(dim, dim_out, 3),
54
+ Transpose(1, 2),
55
+ nn.LayerNorm(dim_out),
56
+ Transpose(1, 2),
57
+ nn.Mish(),
58
+ )
59
+
60
+ def forward(self, x: torch.Tensor, mask: torch.Tensor):
61
+ output = self.block(x * mask)
62
+ return output * mask
63
+
64
+
65
+ class CausalResnetBlock1D(ResnetBlock1D):
66
+ def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
67
+ super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
68
+ self.block1 = CausalBlock1D(dim, dim_out)
69
+ self.block2 = CausalBlock1D(dim_out, dim_out)
70
+
71
+
72
+ class CausalConv1d(torch.nn.Conv1d):
73
+ def __init__(
74
+ self,
75
+ in_channels: int,
76
+ out_channels: int,
77
+ kernel_size: int,
78
+ stride: int = 1,
79
+ dilation: int = 1,
80
+ groups: int = 1,
81
+ bias: bool = True,
82
+ padding_mode: str = 'zeros',
83
+ device=None,
84
+ dtype=None
85
+ ) -> None:
86
+ super(CausalConv1d, self).__init__(in_channels, out_channels,
87
+ kernel_size, stride,
88
+ padding=0, dilation=dilation,
89
+ groups=groups, bias=bias,
90
+ padding_mode=padding_mode,
91
+ device=device, dtype=dtype)
92
+ assert stride == 1
93
+ self.causal_padding = (kernel_size - 1, 0)
94
+
95
+ def forward(self, x: torch.Tensor):
96
+ x = F.pad(x, self.causal_padding)
97
+ x = super(CausalConv1d, self).forward(x)
98
+ return x
99
+ class ConditionalDecoder(nn.Module):
100
+ def __init__(
101
+ self,
102
+ in_channels=320,
103
+ out_channels=80,
104
+ causal=True,
105
+ channels=[256],
106
+ dropout=0.0,
107
+ attention_head_dim=64,
108
+ n_blocks=4,
109
+ num_mid_blocks=12,
110
+ num_heads=8,
111
+ act_fn="gelu",
112
+ meanflow=False,
113
+ ):
114
+ """
115
+ This decoder requires an input with the same shape of the target. So, if your text content
116
+ is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
117
+ """
118
+ super().__init__()
119
+ channels = tuple(channels)
120
+ self.meanflow = meanflow
121
+ self.in_channels = in_channels
122
+ self.out_channels = out_channels
123
+ self.causal = causal
124
+ self.time_embeddings = SinusoidalPosEmb(in_channels)
125
+ time_embed_dim = channels[0] * 4
126
+ self.time_mlp = TimestepEmbedding(
127
+ in_channels=in_channels,
128
+ time_embed_dim=time_embed_dim,
129
+ act_fn="silu",
130
+ )
131
+
132
+ self.down_blocks = nn.ModuleList([])
133
+ self.mid_blocks = nn.ModuleList([])
134
+ self.up_blocks = nn.ModuleList([])
135
+
136
+ # NOTE jrm: `static_chunk_size` is missing?
137
+ self.static_chunk_size = 0
138
+
139
+ output_channel = in_channels
140
+ for i in range(len(channels)): # pylint: disable=consider-using-enumerate
141
+ input_channel = output_channel
142
+ output_channel = channels[i]
143
+ is_last = i == len(channels) - 1
144
+ resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
145
+ ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
146
+ transformer_blocks = nn.ModuleList(
147
+ [
148
+ BasicTransformerBlock(
149
+ dim=output_channel,
150
+ num_attention_heads=num_heads,
151
+ attention_head_dim=attention_head_dim,
152
+ dropout=dropout,
153
+ activation_fn=act_fn,
154
+ )
155
+ for _ in range(n_blocks)
156
+ ]
157
+ )
158
+ downsample = (
159
+ Downsample1D(output_channel) if not is_last else
160
+ CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
161
+ )
162
+ self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
163
+
164
+ for _ in range(num_mid_blocks):
165
+ input_channel = channels[-1]
166
+ out_channels = channels[-1]
167
+ resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
168
+ ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
169
+
170
+ transformer_blocks = nn.ModuleList(
171
+ [
172
+ BasicTransformerBlock(
173
+ dim=output_channel,
174
+ num_attention_heads=num_heads,
175
+ attention_head_dim=attention_head_dim,
176
+ dropout=dropout,
177
+ activation_fn=act_fn,
178
+ )
179
+ for _ in range(n_blocks)
180
+ ]
181
+ )
182
+
183
+ self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
184
+
185
+ channels = channels[::-1] + (channels[0],)
186
+ for i in range(len(channels) - 1):
187
+ input_channel = channels[i] * 2
188
+ output_channel = channels[i + 1]
189
+ is_last = i == len(channels) - 2
190
+ resnet = CausalResnetBlock1D(
191
+ dim=input_channel,
192
+ dim_out=output_channel,
193
+ time_emb_dim=time_embed_dim,
194
+ ) if self.causal else ResnetBlock1D(
195
+ dim=input_channel,
196
+ dim_out=output_channel,
197
+ time_emb_dim=time_embed_dim,
198
+ )
199
+ transformer_blocks = nn.ModuleList(
200
+ [
201
+ BasicTransformerBlock(
202
+ dim=output_channel,
203
+ num_attention_heads=num_heads,
204
+ attention_head_dim=attention_head_dim,
205
+ dropout=dropout,
206
+ activation_fn=act_fn,
207
+ )
208
+ for _ in range(n_blocks)
209
+ ]
210
+ )
211
+ upsample = (
212
+ Upsample1D(output_channel, use_conv_transpose=True)
213
+ if not is_last
214
+ else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
215
+ )
216
+ self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
217
+ self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
218
+ self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
219
+ self.initialize_weights()
220
+ self.time_embed_mixer = None
221
+ if self.meanflow:
222
+ self.time_embed_mixer = get_intmeanflow_time_mixer(time_embed_dim)
223
+
224
+
225
+ @property
226
+ def dtype(self):
227
+ return self.final_proj.weight.dtype
228
+
229
+ def initialize_weights(self):
230
+ for m in self.modules():
231
+ if isinstance(m, nn.Conv1d):
232
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
233
+ if m.bias is not None:
234
+ nn.init.constant_(m.bias, 0)
235
+ elif isinstance(m, nn.GroupNorm):
236
+ nn.init.constant_(m.weight, 1)
237
+ nn.init.constant_(m.bias, 0)
238
+ elif isinstance(m, nn.Linear):
239
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
240
+ if m.bias is not None:
241
+ nn.init.constant_(m.bias, 0)
242
+
243
+ def forward(self, x, mask, mu, t, spks=None, cond=None, r=None):
244
+ """Forward pass of the UNet1DConditional model.
245
+
246
+ Args:
247
+ x: (B, 80, T)
248
+ mask (_type_)
249
+ t (_type_): shape (batch_size)
250
+ spks (_type_, optional) Defaults to None.
251
+ cond (_type_, optional)
252
+ r: end time for meanflow mode (shape (1,) tensor)
253
+
254
+ Raises:
255
+ ValueError: _description_
256
+ ValueError: _description_
257
+
258
+ Returns:
259
+ _type_: _description_
260
+ """
261
+ t = self.time_embeddings(t).to(t.dtype)
262
+ t = self.time_mlp(t)
263
+
264
+ if self.meanflow:
265
+ r = self.time_embeddings(r).to(t.dtype)
266
+ r = self.time_mlp(r)
267
+ concat_embed = torch.cat([t, r], dim=1)
268
+ t = self.time_embed_mixer(concat_embed)
269
+
270
+ x = pack([x, mu], "b * t")[0]
271
+
272
+ if spks is not None:
273
+ spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
274
+ x = pack([x, spks], "b * t")[0]
275
+ if cond is not None:
276
+ x = pack([x, cond], "b * t")[0]
277
+
278
+ hiddens = []
279
+ masks = [mask]
280
+ for resnet, transformer_blocks, downsample in self.down_blocks:
281
+ mask_down = masks[-1]
282
+ x = resnet(x, mask_down, t)
283
+ x = rearrange(x, "b c t -> b t c").contiguous()
284
+ # attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
285
+ attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
286
+ attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
287
+ for transformer_block in transformer_blocks:
288
+ x = transformer_block(
289
+ hidden_states=x,
290
+ attention_mask=attn_mask,
291
+ timestep=t,
292
+ )
293
+ x = rearrange(x, "b t c -> b c t").contiguous()
294
+ hiddens.append(x) # Save hidden states for skip connections
295
+ x = downsample(x * mask_down)
296
+ masks.append(mask_down[:, :, ::2])
297
+ masks = masks[:-1]
298
+ mask_mid = masks[-1]
299
+
300
+ for resnet, transformer_blocks in self.mid_blocks:
301
+ x = resnet(x, mask_mid, t)
302
+ x = rearrange(x, "b c t -> b t c").contiguous()
303
+ # attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
304
+ attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
305
+ attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
306
+ for transformer_block in transformer_blocks:
307
+ x = transformer_block(
308
+ hidden_states=x,
309
+ attention_mask=attn_mask,
310
+ timestep=t,
311
+ )
312
+ x = rearrange(x, "b t c -> b c t").contiguous()
313
+
314
+ for resnet, transformer_blocks, upsample in self.up_blocks:
315
+ mask_up = masks.pop()
316
+ skip = hiddens.pop()
317
+ x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
318
+ x = resnet(x, mask_up, t)
319
+ x = rearrange(x, "b c t -> b t c").contiguous()
320
+ # attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
321
+ attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
322
+ attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
323
+ for transformer_block in transformer_blocks:
324
+ x = transformer_block(
325
+ hidden_states=x,
326
+ attention_mask=attn_mask,
327
+ timestep=t,
328
+ )
329
+ x = rearrange(x, "b t c -> b c t").contiguous()
330
+ x = upsample(x * mask_up)
331
+ x = self.final_block(x, mask_up)
332
+ output = self.final_proj(x * mask_up)
333
+ return output * mask
chatterbox/models/s3gen/f0_predictor.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import torch
15
+ import torch.nn as nn
16
+ from torch.nn.utils.parametrizations import weight_norm
17
+
18
+
19
+ class ConvRNNF0Predictor(nn.Module):
20
+ def __init__(self,
21
+ num_class: int = 1,
22
+ in_channels: int = 80,
23
+ cond_channels: int = 512
24
+ ):
25
+ super().__init__()
26
+
27
+ self.num_class = num_class
28
+ self.condnet = nn.Sequential(
29
+ weight_norm(
30
+ nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
31
+ ),
32
+ nn.ELU(),
33
+ weight_norm(
34
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
35
+ ),
36
+ nn.ELU(),
37
+ weight_norm(
38
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
39
+ ),
40
+ nn.ELU(),
41
+ weight_norm(
42
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
43
+ ),
44
+ nn.ELU(),
45
+ weight_norm(
46
+ nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
47
+ ),
48
+ nn.ELU(),
49
+ )
50
+ self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
51
+
52
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
53
+ x = self.condnet(x)
54
+ x = x.transpose(1, 2)
55
+ return torch.abs(self.classifier(x).squeeze(-1))
chatterbox/models/s3gen/flow.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import logging
15
+ import random
16
+ from typing import Dict, Optional
17
+
18
+ logger = logging.getLogger(__name__)
19
+ import torch
20
+ import torch.nn as nn
21
+ from torch.nn import functional as F
22
+ from .utils.mask import make_pad_mask
23
+ from .configs import CFM_PARAMS
24
+ from omegaconf import DictConfig
25
+
26
+
27
+ logger = logging.getLogger(__name__)
28
+
29
+
30
+ def _repeat_batch_dim(tnsr, B, ndim):
31
+ "repeat batch dimension if it's equal to 1"
32
+ if tnsr is not None:
33
+ # add missing batch dim if needed
34
+ while tnsr.ndim < ndim:
35
+ tnsr = tnsr[None]
36
+ # repeat batch dim as needed
37
+ if B > 1 and tnsr.size(0) == 1:
38
+ tnsr = tnsr.repeat(B, *([1] * (ndim - 1)))
39
+ assert tnsr.ndim == ndim, f"Expected {ndim=}, got {tnsr.ndim=}"
40
+ return tnsr
41
+
42
+
43
+ class CausalMaskedDiffWithXvec(torch.nn.Module):
44
+ def __init__(self,
45
+ input_size: int = 512,
46
+ output_size: int = 80,
47
+ spk_embed_dim: int = 192,
48
+ output_type: str = "mel",
49
+ vocab_size: int = 6561,
50
+ input_frame_rate: int = 25,
51
+ only_mask_loss: bool = True,
52
+ token_mel_ratio: int = 2,
53
+ pre_lookahead_len: int = 3,
54
+ encoder: torch.nn.Module = None,
55
+ decoder: torch.nn.Module = None,
56
+ decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
57
+ 'cfm_params': DictConfig(
58
+ {'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
59
+ 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7,
60
+ 'reg_loss_type': 'l1'}),
61
+ 'decoder_params': {'channels': [256, 256], 'dropout': 0.0,
62
+ 'attention_head_dim': 64,
63
+ 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8,
64
+ 'act_fn': 'gelu'}},
65
+ mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
66
+ 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
67
+ super().__init__()
68
+ self.input_size = input_size
69
+ self.output_size = output_size
70
+ self.decoder_conf = decoder_conf
71
+ self.mel_feat_conf = mel_feat_conf
72
+ self.vocab_size = vocab_size
73
+ self.output_type = output_type
74
+ self.input_frame_rate = input_frame_rate
75
+ logging.info(f"input frame rate={self.input_frame_rate}")
76
+ self.input_embedding = nn.Embedding(vocab_size, input_size)
77
+ self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
78
+ self.encoder = encoder
79
+ self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
80
+ self.decoder = decoder
81
+ self.only_mask_loss = only_mask_loss
82
+ self.token_mel_ratio = token_mel_ratio
83
+ self.pre_lookahead_len = pre_lookahead_len
84
+
85
+ # NOTE: copied in from cosyvoice repo
86
+ def compute_loss(
87
+ self,
88
+ batch: dict,
89
+ device: torch.device,
90
+ ) -> Dict[str, Optional[torch.Tensor]]:
91
+ token = batch['speech_token'].to(device)
92
+ token_len = batch['speech_token_len'].to(device)
93
+ feat = batch['speech_feat'].to(device) # (B, 80, T)
94
+ feat_len = batch['speech_feat_len'].to(device)
95
+ embedding = batch['embedding'].to(device)
96
+
97
+ # NOTE unified training, static_chunk_size > 0 or = 0
98
+ # streaming = True if random.random() < 0.5 else False
99
+
100
+ # xvec projection
101
+ embedding = F.normalize(embedding, dim=1)
102
+ embedding = self.spk_embed_affine_layer(embedding)
103
+
104
+ # concat text and prompt_text
105
+ mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device) # (B, T, 1)
106
+ token = self.input_embedding(torch.clamp(token, min=0)) * mask # (B, T, emb)
107
+
108
+ # text encode
109
+ h, h_lengths = self.encoder(token, token_len) # (B, T, C) -> (B, 2T, C)
110
+ h = self.encoder_proj(h)
111
+
112
+ # get conditions
113
+ conds = torch.zeros(feat.shape, device=token.device)
114
+ for i, j in enumerate(feat_len):
115
+ if random.random() < 0.5:
116
+ continue
117
+ index = random.randint(0, int(0.3 * j))
118
+ conds[i, :, :index] = feat[i, :, :index]
119
+
120
+ mask = (~make_pad_mask(h_lengths.sum(dim=-1).squeeze(dim=1))).to(h)
121
+ loss, _ = self.decoder.compute_loss(
122
+ feat.contiguous(),
123
+ mask.unsqueeze(1),
124
+ h.transpose(1, 2).contiguous(),
125
+ embedding,
126
+ cond=conds,
127
+ # streaming=streaming,
128
+ )
129
+ return {'loss': loss}
130
+
131
+ @torch.inference_mode()
132
+ def inference(self,
133
+ token,
134
+ token_len,
135
+ prompt_token,
136
+ prompt_token_len,
137
+ prompt_feat,
138
+ prompt_feat_len,
139
+ embedding,
140
+ finalize,
141
+ n_timesteps=10,
142
+ noised_mels=None,
143
+ meanflow=False):
144
+ # token: (B, n_toks)
145
+ # token_len: (B,)
146
+ B = token.size(0)
147
+
148
+ # xvec projection
149
+ embedding = torch.atleast_2d(embedding)
150
+ embedding = F.normalize(embedding, dim=1)
151
+ embedding = self.spk_embed_affine_layer(embedding) # (1 or B, emb_dim)
152
+
153
+ # adjust shapes (batching logic)
154
+ prompt_token = _repeat_batch_dim(prompt_token, B, ndim=2) # (B, n_prompt)
155
+ prompt_token_len = _repeat_batch_dim(prompt_token_len, B, ndim=1) # (B,)
156
+ prompt_feat = _repeat_batch_dim(prompt_feat, B, ndim=3) # (B, n_feat, feat_dim=80)
157
+ prompt_feat_len = _repeat_batch_dim(prompt_feat_len, B, ndim=1) # (B,) or None
158
+ embedding = _repeat_batch_dim(embedding, B, ndim=2) # (B, emb_dim)
159
+
160
+ # concat text and prompt_text
161
+ token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
162
+ mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
163
+
164
+ if (token >= self.vocab_size).any():
165
+ logger.error(f"{token.max()}>{self.vocab_size}\n out-of-range special tokens found in flow, fix inputs!")
166
+ token = self.input_embedding(token.long()) * mask
167
+
168
+ # text encode
169
+ h, h_masks = self.encoder(token, token_len)
170
+ if finalize is False:
171
+ h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
172
+
173
+ h_lengths = h_masks.sum(dim=-1).squeeze(dim=-1)
174
+ mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
175
+ h = self.encoder_proj(h)
176
+
177
+ # # get conditions
178
+ conds = torch.zeros([B, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
179
+ conds[:, :mel_len1] = prompt_feat
180
+ conds = conds.transpose(1, 2)
181
+
182
+ mask = (~make_pad_mask(h_lengths)).unsqueeze(1).to(h)
183
+
184
+ if mask.shape[0] != B:
185
+ mask = mask.repeat(B, 1, 1)
186
+
187
+ feat, _ = self.decoder(
188
+ mu=h.transpose(1, 2).contiguous(),
189
+ mask=mask,
190
+ spks=embedding,
191
+ cond=conds,
192
+ n_timesteps=n_timesteps,
193
+ noised_mels=noised_mels,
194
+ meanflow=meanflow,
195
+ )
196
+ feat = feat[:, :, mel_len1:]
197
+ assert feat.shape[2] == mel_len2
198
+ return feat, None # NOTE jrm: why are they returning None here?
chatterbox/models/s3gen/flow_matching.py ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import threading
15
+ import torch
16
+ import torch.nn.functional as F
17
+ from .matcha.flow_matching import BASECFM
18
+ from .configs import CFM_PARAMS
19
+ from tqdm import tqdm
20
+
21
+
22
+ def cast_all(*args, dtype):
23
+ return [a if (not a.dtype.is_floating_point) or a.dtype == dtype else a.to(dtype) for a in args]
24
+
25
+
26
+ class ConditionalCFM(BASECFM):
27
+ def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
28
+ super().__init__(
29
+ n_feats=in_channels,
30
+ cfm_params=cfm_params,
31
+ n_spks=n_spks,
32
+ spk_emb_dim=spk_emb_dim,
33
+ )
34
+ self.t_scheduler = cfm_params.t_scheduler
35
+ self.training_cfg_rate = cfm_params.training_cfg_rate
36
+ self.inference_cfg_rate = cfm_params.inference_cfg_rate
37
+ in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
38
+ # Just change the architecture of the estimator here
39
+ self.estimator = estimator
40
+
41
+ @torch.inference_mode()
42
+ def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
43
+ """Forward diffusion
44
+
45
+ Args:
46
+ mu (torch.Tensor): output of encoder
47
+ shape: (batch_size, n_feats, mel_timesteps)
48
+ mask (torch.Tensor): output_mask
49
+ shape: (batch_size, 1, mel_timesteps)
50
+ n_timesteps (int): number of diffusion steps
51
+ temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
52
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
53
+ shape: (batch_size, spk_emb_dim)
54
+ cond: Not used but kept for future purposes
55
+
56
+ Returns:
57
+ sample: generated mel-spectrogram
58
+ shape: (batch_size, n_feats, mel_timesteps)
59
+ """
60
+
61
+ raise NotImplementedError("unused, needs updating for meanflow model")
62
+
63
+ z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
64
+ cache_size = flow_cache.shape[2]
65
+ # fix prompt and overlap part mu and z
66
+ if cache_size != 0:
67
+ z[:, :, :cache_size] = flow_cache[:, :, :, 0]
68
+ mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
69
+ z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
70
+ mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
71
+ flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
72
+
73
+ t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
74
+ if self.t_scheduler == 'cosine':
75
+ t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
76
+ return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
77
+
78
+ def solve_euler(self, x, t_span, mu, mask, spks, cond, meanflow=False):
79
+ """
80
+ Fixed euler solver for ODEs.
81
+ Args:
82
+ x (torch.Tensor): random noise
83
+ t_span (torch.Tensor): n_timesteps interpolated
84
+ shape: (n_timesteps + 1,)
85
+ mu (torch.Tensor): output of encoder
86
+ shape: (batch_size, n_feats, mel_timesteps)
87
+ mask (torch.Tensor): output_mask
88
+ shape: (batch_size, 1, mel_timesteps)
89
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
90
+ shape: (batch_size, spk_emb_dim)
91
+ cond: Not used but kept for future purposes
92
+ meanflow: meanflow mode
93
+ """
94
+ in_dtype = x.dtype
95
+ x, t_span, mu, mask, spks, cond = cast_all(x, t_span, mu, mask, spks, cond, dtype=self.estimator.dtype)
96
+
97
+ # Duplicated batch dims are for CFG
98
+ # Do not use concat, it may cause memory format changed and trt infer with wrong results!
99
+ B, T = mu.size(0), x.size(2)
100
+ x_in = torch.zeros([2 * B, 80, T], device=x.device, dtype=x.dtype)
101
+ mask_in = torch.zeros([2 * B, 1, T], device=x.device, dtype=x.dtype)
102
+ mu_in = torch.zeros([2 * B, 80, T], device=x.device, dtype=x.dtype)
103
+ t_in = torch.zeros([2 * B ], device=x.device, dtype=x.dtype)
104
+ spks_in = torch.zeros([2 * B, 80 ], device=x.device, dtype=x.dtype)
105
+ cond_in = torch.zeros([2 * B, 80, T], device=x.device, dtype=x.dtype)
106
+ r_in = torch.zeros([2 * B ], device=x.device, dtype=x.dtype) # (only used for meanflow)
107
+
108
+ for t, r in zip(t_span[:-1], t_span[1:]):
109
+ t = t.unsqueeze(dim=0)
110
+ r = r.unsqueeze(dim=0)
111
+ # Shapes:
112
+ # x_in ( 2B, 80, T )
113
+ # mask_in ( 2B, 1, T )
114
+ # mu_in ( 2B, 80, T )
115
+ # t_in ( 2B, )
116
+ # spks_in ( 2B, 80, )
117
+ # cond_in ( 2B, 80, T )
118
+ # r_in ( 2B, )
119
+ # x ( B, 80, T )
120
+ # mask ( B, 1, T )
121
+ # mu ( B, 80, T )
122
+ # t ( B, )
123
+ # spks ( B, 80, )
124
+ # cond ( B, 80, T )
125
+ # r ( B, )
126
+
127
+ x_in[:B] = x_in[B:] = x
128
+ mask_in[:B] = mask_in[B:] = mask
129
+ mu_in[:B] = mu
130
+ t_in[:B] = t_in[B:] = t
131
+ spks_in[:B] = spks
132
+ cond_in[:B] = cond
133
+ r_in[:B] = r_in[B:] = r # (only used for meanflow)
134
+ dxdt = self.estimator.forward(
135
+ x=x_in, mask=mask_in, mu=mu_in, t=t_in, spks=spks_in, cond=cond_in,
136
+ r=r_in if meanflow else None,
137
+ )
138
+ dxdt, cfg_dxdt = torch.split(dxdt, [B, B], dim=0)
139
+ dxdt = ((1.0 + self.inference_cfg_rate) * dxdt - self.inference_cfg_rate * cfg_dxdt)
140
+ dt = r - t
141
+ x = x + dt * dxdt
142
+
143
+
144
+
145
+ return x.to(in_dtype)
146
+
147
+ def compute_loss(self, x1, mask, mu, spks=None, cond=None):
148
+ """Computes diffusion loss
149
+
150
+ Args:
151
+ x1 (torch.Tensor): Target
152
+ shape: (batch_size, n_feats, mel_timesteps)
153
+ mask (torch.Tensor): target mask
154
+ shape: (batch_size, 1, mel_timesteps)
155
+ mu (torch.Tensor): output of encoder
156
+ shape: (batch_size, n_feats, mel_timesteps)
157
+ spks (torch.Tensor, optional): speaker embedding. Defaults to None.
158
+ shape: (batch_size, spk_emb_dim)
159
+
160
+ Returns:
161
+ loss: conditional flow matching loss
162
+ y: conditional flow
163
+ shape: (batch_size, n_feats, mel_timesteps)
164
+ """
165
+ b, _, t = mu.shape
166
+
167
+ # random timestep
168
+ t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
169
+ if self.t_scheduler == 'cosine':
170
+ t = 1 - torch.cos(t * 0.5 * torch.pi)
171
+ # sample noise p(x_0)
172
+ z = torch.randn_like(x1)
173
+
174
+ y = (1 - (1 - self.sigma_min) * t) * z + t * x1
175
+ u = x1 - (1 - self.sigma_min) * z
176
+
177
+ # during training, we randomly drop condition to trade off mode coverage and sample fidelity
178
+ if self.training_cfg_rate > 0:
179
+ cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
180
+ mu = mu * cfg_mask.view(-1, 1, 1)
181
+ spks = spks * cfg_mask.view(-1, 1)
182
+ cond = cond * cfg_mask.view(-1, 1, 1)
183
+
184
+ pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
185
+ loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
186
+ return loss, y
187
+
188
+
189
+ class CausalConditionalCFM(ConditionalCFM):
190
+ def __init__(self, in_channels=240, cfm_params=CFM_PARAMS, n_spks=1, spk_emb_dim=80, estimator=None):
191
+ super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
192
+ # TODO: BAD BAD IDEA - IT'LL MESS UP DISTILLATION - SETTING TO NONE
193
+ self.rand_noise = None
194
+
195
+ @torch.inference_mode()
196
+ def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, noised_mels=None, meanflow=False):
197
+ """Forward diffusion
198
+
199
+ Args:
200
+ mu (torch.Tensor): output of encoder
201
+ shape: (batch_size, n_feats, mel_timesteps)
202
+ mask (torch.Tensor): output_mask
203
+ shape: (batch_size, 1, mel_timesteps)
204
+ n_timesteps (int): number of diffusion steps
205
+ temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
206
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
207
+ shape: (batch_size, spk_emb_dim)
208
+ cond: Not used but kept for future purposes
209
+ noised_mels: gt mels noised a time t
210
+ Returns:
211
+ sample: generated mel-spectrogram
212
+ shape: (batch_size, n_feats, mel_timesteps)
213
+ """
214
+
215
+ B = mu.size(0)
216
+ z = torch.randn_like(mu)
217
+
218
+ if noised_mels is not None:
219
+ prompt_len = mu.size(2) - noised_mels.size(2)
220
+ z[..., prompt_len:] = noised_mels
221
+
222
+ # time steps for reverse diffusion
223
+ t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
224
+ if (not meanflow) and (self.t_scheduler == 'cosine'):
225
+ t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
226
+
227
+ # NOTE: right now, the only meanflow models are also distilled models, which don't need CFG
228
+ # because they were distilled with CFG outputs. We would need to add another hparam and
229
+ # change the conditional logic here if we want to use CFG inference with a meanflow model.
230
+ if meanflow:
231
+ return self.basic_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
232
+
233
+ return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, meanflow=meanflow), None
234
+
235
+ def basic_euler(self, x, t_span, mu, mask, spks, cond):
236
+ in_dtype = x.dtype
237
+ x, t_span, mu, mask, spks, cond = cast_all(x, t_span, mu, mask, spks, cond, dtype=self.estimator.dtype)
238
+
239
+ print("S3 Token -> Mel Inference...")
240
+ for t, r in tqdm(zip(t_span[..., :-1], t_span[..., 1:]), total=t_span.shape[-1] - 1):
241
+ t, r = t[None], r[None]
242
+ dxdt = self.estimator.forward(x, mask=mask, mu=mu, t=t, spks=spks, cond=cond, r=r)
243
+ dt = r - t
244
+ x = x + dt * dxdt
245
+
246
+ return x.to(in_dtype)
chatterbox/models/s3gen/hifigan.py ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # jrm: adapted from CosyVoice/cosyvoice/hifigan/generator.py
2
+ # most modules should be reusable, but I found their SineGen changed a git.
3
+
4
+ # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """HIFI-GAN"""
19
+
20
+ from typing import Dict, Optional, List
21
+ import numpy as np
22
+ from scipy.signal import get_window
23
+ import torch
24
+ import torch.nn.functional as F
25
+ from torch.nn import Conv1d
26
+ from torch.nn import ConvTranspose1d
27
+ from torch.nn.utils import remove_weight_norm
28
+ from torch.nn.utils.parametrizations import weight_norm
29
+ from torch.distributions.uniform import Uniform
30
+ from torch import nn, sin, pow
31
+ from torch.nn import Parameter
32
+
33
+
34
+ class Snake(nn.Module):
35
+ '''
36
+ Implementation of a sine-based periodic activation function
37
+ Shape:
38
+ - Input: (B, C, T)
39
+ - Output: (B, C, T), same shape as the input
40
+ Parameters:
41
+ - alpha - trainable parameter
42
+ References:
43
+ - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
44
+ https://arxiv.org/abs/2006.08195
45
+ Examples:
46
+ >>> a1 = snake(256)
47
+ >>> x = torch.randn(256)
48
+ >>> x = a1(x)
49
+ '''
50
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
51
+ '''
52
+ Initialization.
53
+ INPUT:
54
+ - in_features: shape of the input
55
+ - alpha: trainable parameter
56
+ alpha is initialized to 1 by default, higher values = higher-frequency.
57
+ alpha will be trained along with the rest of your model.
58
+ '''
59
+ super(Snake, self).__init__()
60
+ self.in_features = in_features
61
+
62
+ # initialize alpha
63
+ self.alpha_logscale = alpha_logscale
64
+ if self.alpha_logscale: # log scale alphas initialized to zeros
65
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
66
+ else: # linear scale alphas initialized to ones
67
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
68
+
69
+ self.alpha.requires_grad = alpha_trainable
70
+
71
+ self.no_div_by_zero = 0.000000001
72
+
73
+ def forward(self, x):
74
+ '''
75
+ Forward pass of the function.
76
+ Applies the function to the input elementwise.
77
+ Snake ∶= x + 1/a * sin^2 (xa)
78
+ '''
79
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
80
+ if self.alpha_logscale:
81
+ alpha = torch.exp(alpha)
82
+ x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
83
+
84
+ return x
85
+
86
+
87
+
88
+ def get_padding(kernel_size, dilation=1):
89
+ return int((kernel_size * dilation - dilation) / 2)
90
+
91
+ def init_weights(m, mean=0.0, std=0.01):
92
+ classname = m.__class__.__name__
93
+ if classname.find("Conv") != -1:
94
+ m.weight.data.normal_(mean, std)
95
+
96
+
97
+ """hifigan based generator implementation.
98
+
99
+ This code is modified from https://github.com/jik876/hifi-gan
100
+ ,https://github.com/kan-bayashi/ParallelWaveGAN and
101
+ https://github.com/NVIDIA/BigVGAN
102
+
103
+ """
104
+
105
+
106
+ class ResBlock(torch.nn.Module):
107
+ """Residual block module in HiFiGAN/BigVGAN."""
108
+ def __init__(
109
+ self,
110
+ channels: int = 512,
111
+ kernel_size: int = 3,
112
+ dilations: List[int] = [1, 3, 5],
113
+ ):
114
+ super(ResBlock, self).__init__()
115
+ self.convs1 = nn.ModuleList()
116
+ self.convs2 = nn.ModuleList()
117
+
118
+ for dilation in dilations:
119
+ self.convs1.append(
120
+ weight_norm(
121
+ Conv1d(
122
+ channels,
123
+ channels,
124
+ kernel_size,
125
+ 1,
126
+ dilation=dilation,
127
+ padding=get_padding(kernel_size, dilation)
128
+ )
129
+ )
130
+ )
131
+ self.convs2.append(
132
+ weight_norm(
133
+ Conv1d(
134
+ channels,
135
+ channels,
136
+ kernel_size,
137
+ 1,
138
+ dilation=1,
139
+ padding=get_padding(kernel_size, 1)
140
+ )
141
+ )
142
+ )
143
+ self.convs1.apply(init_weights)
144
+ self.convs2.apply(init_weights)
145
+ self.activations1 = nn.ModuleList([
146
+ Snake(channels, alpha_logscale=False)
147
+ for _ in range(len(self.convs1))
148
+ ])
149
+ self.activations2 = nn.ModuleList([
150
+ Snake(channels, alpha_logscale=False)
151
+ for _ in range(len(self.convs2))
152
+ ])
153
+
154
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
155
+ for idx in range(len(self.convs1)):
156
+ xt = self.activations1[idx](x)
157
+ xt = self.convs1[idx](xt)
158
+ xt = self.activations2[idx](xt)
159
+ xt = self.convs2[idx](xt)
160
+ x = xt + x
161
+ return x
162
+
163
+ def remove_weight_norm(self):
164
+ for idx in range(len(self.convs1)):
165
+ remove_weight_norm(self.convs1[idx])
166
+ remove_weight_norm(self.convs2[idx])
167
+
168
+
169
+ class SineGen(torch.nn.Module):
170
+ """ Definition of sine generator
171
+ SineGen(samp_rate, harmonic_num = 0,
172
+ sine_amp = 0.1, noise_std = 0.003,
173
+ voiced_threshold = 0,
174
+ flag_for_pulse=False)
175
+ samp_rate: sampling rate in Hz
176
+ harmonic_num: number of harmonic overtones (default 0)
177
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
178
+ noise_std: std of Gaussian noise (default 0.003)
179
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
180
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
181
+ Note: when flag_for_pulse is True, the first time step of a voiced
182
+ segment is always sin(np.pi) or cos(0)
183
+ """
184
+
185
+ def __init__(self, samp_rate, harmonic_num=0,
186
+ sine_amp=0.1, noise_std=0.003,
187
+ voiced_threshold=0):
188
+ super(SineGen, self).__init__()
189
+ self.sine_amp = sine_amp
190
+ self.noise_std = noise_std
191
+ self.harmonic_num = harmonic_num
192
+ self.sampling_rate = samp_rate
193
+ self.voiced_threshold = voiced_threshold
194
+
195
+ def _f02uv(self, f0):
196
+ # generate uv signal
197
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
198
+ return uv
199
+
200
+ @torch.no_grad()
201
+ def forward(self, f0):
202
+ """
203
+ :param f0: [B, 1, sample_len], Hz
204
+ :return: [B, 1, sample_len]
205
+ """
206
+
207
+ F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
208
+ for i in range(self.harmonic_num + 1):
209
+ F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
210
+
211
+ theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
212
+ u_dist = Uniform(low=-np.pi, high=np.pi)
213
+ phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
214
+ phase_vec[:, 0, :] = 0
215
+
216
+ # generate sine waveforms
217
+ sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
218
+
219
+ # generate uv signal
220
+ uv = self._f02uv(f0)
221
+
222
+ # noise: for unvoiced should be similar to sine_amp
223
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
224
+ # . for voiced regions is self.noise_std
225
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
226
+ noise = noise_amp * torch.randn_like(sine_waves)
227
+
228
+ # first: set the unvoiced part to 0 by uv
229
+ # then: additive noise
230
+ sine_waves = sine_waves * uv + noise
231
+ return sine_waves, uv, noise
232
+
233
+
234
+ class SourceModuleHnNSF(torch.nn.Module):
235
+ """ SourceModule for hn-nsf
236
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
237
+ add_noise_std=0.003, voiced_threshod=0)
238
+ sampling_rate: sampling_rate in Hz
239
+ harmonic_num: number of harmonic above F0 (default: 0)
240
+ sine_amp: amplitude of sine source signal (default: 0.1)
241
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
242
+ note that amplitude of noise in unvoiced is decided
243
+ by sine_amp
244
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
245
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
246
+ F0_sampled (batchsize, length, 1)
247
+ Sine_source (batchsize, length, 1)
248
+ noise_source (batchsize, length 1)
249
+ uv (batchsize, length, 1)
250
+ """
251
+
252
+ def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
253
+ add_noise_std=0.003, voiced_threshod=0):
254
+ super(SourceModuleHnNSF, self).__init__()
255
+
256
+ self.sine_amp = sine_amp
257
+ self.noise_std = add_noise_std
258
+
259
+ # to produce sine waveforms
260
+ self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
261
+ sine_amp, add_noise_std, voiced_threshod)
262
+
263
+ # to merge source harmonics into a single excitation
264
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
265
+ self.l_tanh = torch.nn.Tanh()
266
+
267
+ def forward(self, x):
268
+ """
269
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
270
+ F0_sampled (batchsize, length, 1)
271
+ Sine_source (batchsize, length, 1)
272
+ noise_source (batchsize, length 1)
273
+ """
274
+ # source for harmonic branch
275
+ with torch.no_grad():
276
+ sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
277
+ sine_wavs = sine_wavs.transpose(1, 2)
278
+ uv = uv.transpose(1, 2)
279
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
280
+
281
+ # source for noise branch, in the same shape as uv
282
+ noise = torch.randn_like(uv) * self.sine_amp / 3
283
+ return sine_merge, noise, uv
284
+
285
+
286
+ class HiFTGenerator(nn.Module):
287
+ """
288
+ HiFTNet Generator: Neural Source Filter + ISTFTNet
289
+ https://arxiv.org/abs/2309.09493
290
+ """
291
+ def __init__(
292
+ self,
293
+ in_channels: int = 80,
294
+ base_channels: int = 512,
295
+ nb_harmonics: int = 8,
296
+ sampling_rate: int = 22050,
297
+ nsf_alpha: float = 0.1,
298
+ nsf_sigma: float = 0.003,
299
+ nsf_voiced_threshold: float = 10,
300
+ upsample_rates: List[int] = [8, 8],
301
+ upsample_kernel_sizes: List[int] = [16, 16],
302
+ istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
303
+ resblock_kernel_sizes: List[int] = [3, 7, 11],
304
+ resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
305
+ source_resblock_kernel_sizes: List[int] = [7, 11],
306
+ source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
307
+ lrelu_slope: float = 0.1,
308
+ audio_limit: float = 0.99,
309
+ f0_predictor: torch.nn.Module = None,
310
+ ):
311
+ super(HiFTGenerator, self).__init__()
312
+
313
+ self.out_channels = 1
314
+ self.nb_harmonics = nb_harmonics
315
+ self.sampling_rate = sampling_rate
316
+ self.istft_params = istft_params
317
+ self.lrelu_slope = lrelu_slope
318
+ self.audio_limit = audio_limit
319
+
320
+ self.num_kernels = len(resblock_kernel_sizes)
321
+ self.num_upsamples = len(upsample_rates)
322
+ self.m_source = SourceModuleHnNSF(
323
+ sampling_rate=sampling_rate,
324
+ upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
325
+ harmonic_num=nb_harmonics,
326
+ sine_amp=nsf_alpha,
327
+ add_noise_std=nsf_sigma,
328
+ voiced_threshod=nsf_voiced_threshold)
329
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
330
+
331
+ self.conv_pre = weight_norm(
332
+ Conv1d(in_channels, base_channels, 7, 1, padding=3)
333
+ )
334
+
335
+ # Up
336
+ self.ups = nn.ModuleList()
337
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
338
+ self.ups.append(
339
+ weight_norm(
340
+ ConvTranspose1d(
341
+ base_channels // (2**i),
342
+ base_channels // (2**(i + 1)),
343
+ k,
344
+ u,
345
+ padding=(k - u) // 2,
346
+ )
347
+ )
348
+ )
349
+
350
+ # Down
351
+ self.source_downs = nn.ModuleList()
352
+ self.source_resblocks = nn.ModuleList()
353
+ downsample_rates = [1] + upsample_rates[::-1][:-1]
354
+ downsample_cum_rates = np.cumprod(downsample_rates)
355
+ for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
356
+ if u == 1:
357
+ self.source_downs.append(
358
+ Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
359
+ )
360
+ else:
361
+ self.source_downs.append(
362
+ Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
363
+ )
364
+
365
+ self.source_resblocks.append(
366
+ ResBlock(base_channels // (2 ** (i + 1)), k, d)
367
+ )
368
+
369
+ self.resblocks = nn.ModuleList()
370
+ for i in range(len(self.ups)):
371
+ ch = base_channels // (2**(i + 1))
372
+ for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
373
+ self.resblocks.append(ResBlock(ch, k, d))
374
+
375
+ self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
376
+ self.ups.apply(init_weights)
377
+ self.conv_post.apply(init_weights)
378
+ self.reflection_pad = nn.ReflectionPad1d((1, 0))
379
+ self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
380
+ self.f0_predictor = f0_predictor
381
+
382
+ def remove_weight_norm(self):
383
+ print('Removing weight norm...')
384
+ for l in self.ups:
385
+ remove_weight_norm(l)
386
+ for l in self.resblocks:
387
+ l.remove_weight_norm()
388
+ remove_weight_norm(self.conv_pre)
389
+ remove_weight_norm(self.conv_post)
390
+ self.m_source.remove_weight_norm()
391
+ for l in self.source_downs:
392
+ remove_weight_norm(l)
393
+ for l in self.source_resblocks:
394
+ l.remove_weight_norm()
395
+
396
+ def _stft(self, x):
397
+ spec = torch.stft(
398
+ x,
399
+ self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
400
+ return_complex=True)
401
+ spec = torch.view_as_real(spec) # [B, F, TT, 2]
402
+ return spec[..., 0], spec[..., 1]
403
+
404
+ def _istft(self, magnitude, phase):
405
+ magnitude = torch.clip(magnitude, max=1e2)
406
+ real = magnitude * torch.cos(phase)
407
+ img = magnitude * torch.sin(phase)
408
+ inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
409
+ self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
410
+ return inverse_transform
411
+
412
+ def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
413
+ s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
414
+ s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
415
+
416
+ x = self.conv_pre(x)
417
+ for i in range(self.num_upsamples):
418
+ x = F.leaky_relu(x, self.lrelu_slope)
419
+ x = self.ups[i](x)
420
+
421
+ if i == self.num_upsamples - 1:
422
+ x = self.reflection_pad(x)
423
+
424
+ # fusion
425
+ si = self.source_downs[i](s_stft)
426
+ si = self.source_resblocks[i](si)
427
+ x = x + si
428
+
429
+ xs = None
430
+ for j in range(self.num_kernels):
431
+ if xs is None:
432
+ xs = self.resblocks[i * self.num_kernels + j](x)
433
+ else:
434
+ xs += self.resblocks[i * self.num_kernels + j](x)
435
+ x = xs / self.num_kernels
436
+
437
+ x = F.leaky_relu(x)
438
+ x = self.conv_post(x)
439
+ magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
440
+ phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
441
+
442
+ x = self._istft(magnitude, phase)
443
+ x = torch.clamp(x, -self.audio_limit, self.audio_limit)
444
+ return x
445
+
446
+ def forward(
447
+ self,
448
+ batch: dict,
449
+ device: torch.device,
450
+ ) -> Dict[str, Optional[torch.Tensor]]:
451
+ speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
452
+ # mel->f0
453
+ f0 = self.f0_predictor(speech_feat)
454
+ # f0->source
455
+ s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
456
+ s, _, _ = self.m_source(s)
457
+ s = s.transpose(1, 2)
458
+ # mel+source->speech
459
+ generated_speech = self.decode(x=speech_feat, s=s)
460
+ return generated_speech, f0
461
+
462
+ @torch.inference_mode()
463
+ def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
464
+ # mel->f0
465
+ f0 = self.f0_predictor(speech_feat)
466
+ # f0->source
467
+ s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
468
+ s, _, _ = self.m_source(s)
469
+ s = s.transpose(1, 2)
470
+ # use cache_source to avoid glitch
471
+ if cache_source.shape[2] != 0:
472
+ s[:, :, :cache_source.shape[2]] = cache_source
473
+ generated_speech = self.decode(x=speech_feat, s=s)
474
+ return generated_speech, s
chatterbox/models/s3gen/matcha/__pycache__/decoder.cpython-311.pyc ADDED
Binary file (21.3 kB). View file
 
chatterbox/models/s3gen/matcha/__pycache__/flow_matching.cpython-311.pyc ADDED
Binary file (6.47 kB). View file
 
chatterbox/models/s3gen/matcha/__pycache__/transformer.cpython-311.pyc ADDED
Binary file (14.8 kB). View file
 
chatterbox/models/s3gen/matcha/decoder.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Optional
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from conformer import ConformerBlock
8
+ from diffusers.models.activations import get_activation
9
+ from einops import pack, rearrange, repeat
10
+
11
+ from .transformer import BasicTransformerBlock
12
+
13
+
14
+ class SinusoidalPosEmb(torch.nn.Module):
15
+ def __init__(self, dim):
16
+ super().__init__()
17
+ self.dim = dim
18
+ assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"
19
+
20
+ def forward(self, x, scale=1000):
21
+ if x.ndim < 1:
22
+ x = x.unsqueeze(0)
23
+ device = x.device
24
+ half_dim = self.dim // 2
25
+ emb = math.log(10000) / (half_dim - 1)
26
+ emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
27
+ emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
28
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
29
+ return emb
30
+
31
+
32
+ class Block1D(torch.nn.Module):
33
+ def __init__(self, dim, dim_out, groups=8):
34
+ super().__init__()
35
+ self.block = torch.nn.Sequential(
36
+ torch.nn.Conv1d(dim, dim_out, 3, padding=1),
37
+ torch.nn.GroupNorm(groups, dim_out),
38
+ nn.Mish(),
39
+ )
40
+
41
+ def forward(self, x, mask):
42
+ output = self.block(x * mask)
43
+ return output * mask
44
+
45
+
46
+ class ResnetBlock1D(torch.nn.Module):
47
+ def __init__(self, dim, dim_out, time_emb_dim, groups=8):
48
+ super().__init__()
49
+ self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out))
50
+
51
+ self.block1 = Block1D(dim, dim_out, groups=groups)
52
+ self.block2 = Block1D(dim_out, dim_out, groups=groups)
53
+
54
+ self.res_conv = torch.nn.Conv1d(dim, dim_out, 1)
55
+
56
+ def forward(self, x, mask, time_emb):
57
+ h = self.block1(x, mask)
58
+ h += self.mlp(time_emb).unsqueeze(-1)
59
+ h = self.block2(h, mask)
60
+ output = h + self.res_conv(x * mask)
61
+ return output
62
+
63
+
64
+ class Downsample1D(nn.Module):
65
+ def __init__(self, dim):
66
+ super().__init__()
67
+ self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1)
68
+
69
+ def forward(self, x):
70
+ return self.conv(x)
71
+
72
+
73
+ class TimestepEmbedding(nn.Module):
74
+ def __init__(
75
+ self,
76
+ in_channels: int,
77
+ time_embed_dim: int,
78
+ act_fn: str = "silu",
79
+ out_dim: int = None,
80
+ post_act_fn: Optional[str] = None,
81
+ cond_proj_dim=None,
82
+ ):
83
+ super().__init__()
84
+
85
+ self.linear_1 = nn.Linear(in_channels, time_embed_dim)
86
+
87
+ if cond_proj_dim is not None:
88
+ self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
89
+ else:
90
+ self.cond_proj = None
91
+
92
+ self.act = get_activation(act_fn)
93
+
94
+ if out_dim is not None:
95
+ time_embed_dim_out = out_dim
96
+ else:
97
+ time_embed_dim_out = time_embed_dim
98
+ self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
99
+
100
+ if post_act_fn is None:
101
+ self.post_act = None
102
+ else:
103
+ self.post_act = get_activation(post_act_fn)
104
+
105
+ def forward(self, sample, condition=None):
106
+ if condition is not None:
107
+ sample = sample + self.cond_proj(condition)
108
+ sample = self.linear_1(sample)
109
+
110
+ if self.act is not None:
111
+ sample = self.act(sample)
112
+
113
+ sample = self.linear_2(sample)
114
+
115
+ if self.post_act is not None:
116
+ sample = self.post_act(sample)
117
+ return sample
118
+
119
+
120
+ class Upsample1D(nn.Module):
121
+ """A 1D upsampling layer with an optional convolution.
122
+
123
+ Parameters:
124
+ channels (`int`):
125
+ number of channels in the inputs and outputs.
126
+ use_conv (`bool`, default `False`):
127
+ option to use a convolution.
128
+ use_conv_transpose (`bool`, default `False`):
129
+ option to use a convolution transpose.
130
+ out_channels (`int`, optional):
131
+ number of output channels. Defaults to `channels`.
132
+ """
133
+
134
+ def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"):
135
+ super().__init__()
136
+ self.channels = channels
137
+ self.out_channels = out_channels or channels
138
+ self.use_conv = use_conv
139
+ self.use_conv_transpose = use_conv_transpose
140
+ self.name = name
141
+
142
+ self.conv = None
143
+ if use_conv_transpose:
144
+ self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
145
+ elif use_conv:
146
+ self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
147
+
148
+ def forward(self, inputs):
149
+ assert inputs.shape[1] == self.channels
150
+ if self.use_conv_transpose:
151
+ return self.conv(inputs)
152
+
153
+ outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
154
+
155
+ if self.use_conv:
156
+ outputs = self.conv(outputs)
157
+
158
+ return outputs
159
+
160
+
161
+ class ConformerWrapper(ConformerBlock):
162
+ def __init__( # pylint: disable=useless-super-delegation
163
+ self,
164
+ *,
165
+ dim,
166
+ dim_head=64,
167
+ heads=8,
168
+ ff_mult=4,
169
+ conv_expansion_factor=2,
170
+ conv_kernel_size=31,
171
+ attn_dropout=0,
172
+ ff_dropout=0,
173
+ conv_dropout=0,
174
+ conv_causal=False,
175
+ ):
176
+ super().__init__(
177
+ dim=dim,
178
+ dim_head=dim_head,
179
+ heads=heads,
180
+ ff_mult=ff_mult,
181
+ conv_expansion_factor=conv_expansion_factor,
182
+ conv_kernel_size=conv_kernel_size,
183
+ attn_dropout=attn_dropout,
184
+ ff_dropout=ff_dropout,
185
+ conv_dropout=conv_dropout,
186
+ conv_causal=conv_causal,
187
+ )
188
+
189
+ def forward(
190
+ self,
191
+ hidden_states,
192
+ attention_mask,
193
+ encoder_hidden_states=None,
194
+ encoder_attention_mask=None,
195
+ timestep=None,
196
+ ):
197
+ return super().forward(x=hidden_states, mask=attention_mask.bool())
198
+
199
+
200
+ class Decoder(nn.Module):
201
+ def __init__(
202
+ self,
203
+ in_channels,
204
+ out_channels,
205
+ channels=(256, 256),
206
+ dropout=0.05,
207
+ attention_head_dim=64,
208
+ n_blocks=1,
209
+ num_mid_blocks=2,
210
+ num_heads=4,
211
+ act_fn="snake",
212
+ down_block_type="transformer",
213
+ mid_block_type="transformer",
214
+ up_block_type="transformer",
215
+ ):
216
+ super().__init__()
217
+ channels = tuple(channels)
218
+ self.in_channels = in_channels
219
+ self.out_channels = out_channels
220
+
221
+ self.time_embeddings = SinusoidalPosEmb(in_channels)
222
+ time_embed_dim = channels[0] * 4
223
+ self.time_mlp = TimestepEmbedding(
224
+ in_channels=in_channels,
225
+ time_embed_dim=time_embed_dim,
226
+ act_fn="silu",
227
+ )
228
+
229
+ self.down_blocks = nn.ModuleList([])
230
+ self.mid_blocks = nn.ModuleList([])
231
+ self.up_blocks = nn.ModuleList([])
232
+
233
+ output_channel = in_channels
234
+ for i in range(len(channels)): # pylint: disable=consider-using-enumerate
235
+ input_channel = output_channel
236
+ output_channel = channels[i]
237
+ is_last = i == len(channels) - 1
238
+ resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
239
+ transformer_blocks = nn.ModuleList(
240
+ [
241
+ self.get_block(
242
+ down_block_type,
243
+ output_channel,
244
+ attention_head_dim,
245
+ num_heads,
246
+ dropout,
247
+ act_fn,
248
+ )
249
+ for _ in range(n_blocks)
250
+ ]
251
+ )
252
+ downsample = (
253
+ Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
254
+ )
255
+
256
+ self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
257
+
258
+ for i in range(num_mid_blocks):
259
+ input_channel = channels[-1]
260
+ out_channels = channels[-1]
261
+
262
+ resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
263
+
264
+ transformer_blocks = nn.ModuleList(
265
+ [
266
+ self.get_block(
267
+ mid_block_type,
268
+ output_channel,
269
+ attention_head_dim,
270
+ num_heads,
271
+ dropout,
272
+ act_fn,
273
+ )
274
+ for _ in range(n_blocks)
275
+ ]
276
+ )
277
+
278
+ self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
279
+
280
+ channels = channels[::-1] + (channels[0],)
281
+ for i in range(len(channels) - 1):
282
+ input_channel = channels[i]
283
+ output_channel = channels[i + 1]
284
+ is_last = i == len(channels) - 2
285
+
286
+ resnet = ResnetBlock1D(
287
+ dim=2 * input_channel,
288
+ dim_out=output_channel,
289
+ time_emb_dim=time_embed_dim,
290
+ )
291
+ transformer_blocks = nn.ModuleList(
292
+ [
293
+ self.get_block(
294
+ up_block_type,
295
+ output_channel,
296
+ attention_head_dim,
297
+ num_heads,
298
+ dropout,
299
+ act_fn,
300
+ )
301
+ for _ in range(n_blocks)
302
+ ]
303
+ )
304
+ upsample = (
305
+ Upsample1D(output_channel, use_conv_transpose=True)
306
+ if not is_last
307
+ else nn.Conv1d(output_channel, output_channel, 3, padding=1)
308
+ )
309
+
310
+ self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
311
+
312
+ self.final_block = Block1D(channels[-1], channels[-1])
313
+ self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
314
+
315
+ self.initialize_weights()
316
+ # nn.init.normal_(self.final_proj.weight)
317
+
318
+ @staticmethod
319
+ def get_block(block_type, dim, attention_head_dim, num_heads, dropout, act_fn):
320
+ if block_type == "conformer":
321
+ block = ConformerWrapper(
322
+ dim=dim,
323
+ dim_head=attention_head_dim,
324
+ heads=num_heads,
325
+ ff_mult=1,
326
+ conv_expansion_factor=2,
327
+ ff_dropout=dropout,
328
+ attn_dropout=dropout,
329
+ conv_dropout=dropout,
330
+ conv_kernel_size=31,
331
+ )
332
+ elif block_type == "transformer":
333
+ block = BasicTransformerBlock(
334
+ dim=dim,
335
+ num_attention_heads=num_heads,
336
+ attention_head_dim=attention_head_dim,
337
+ dropout=dropout,
338
+ activation_fn=act_fn,
339
+ )
340
+ else:
341
+ raise ValueError(f"Unknown block type {block_type}")
342
+
343
+ return block
344
+
345
+ def initialize_weights(self):
346
+ for m in self.modules():
347
+ if isinstance(m, nn.Conv1d):
348
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
349
+
350
+ if m.bias is not None:
351
+ nn.init.constant_(m.bias, 0)
352
+
353
+ elif isinstance(m, nn.GroupNorm):
354
+ nn.init.constant_(m.weight, 1)
355
+ nn.init.constant_(m.bias, 0)
356
+
357
+ elif isinstance(m, nn.Linear):
358
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
359
+
360
+ if m.bias is not None:
361
+ nn.init.constant_(m.bias, 0)
362
+
363
+ def forward(self, x, mask, mu, t, spks=None, cond=None):
364
+ """Forward pass of the UNet1DConditional model.
365
+
366
+ Args:
367
+ x (torch.Tensor): shape (batch_size, in_channels, time)
368
+ mask (_type_): shape (batch_size, 1, time)
369
+ t (_type_): shape (batch_size)
370
+ spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
371
+ cond (_type_, optional): placeholder for future use. Defaults to None.
372
+
373
+ Raises:
374
+ ValueError: _description_
375
+ ValueError: _description_
376
+
377
+ Returns:
378
+ _type_: _description_
379
+ """
380
+
381
+ t = self.time_embeddings(t)
382
+ t = self.time_mlp(t)
383
+
384
+ x = pack([x, mu], "b * t")[0]
385
+
386
+ if spks is not None:
387
+ spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
388
+ x = pack([x, spks], "b * t")[0]
389
+
390
+ hiddens = []
391
+ masks = [mask]
392
+ for resnet, transformer_blocks, downsample in self.down_blocks:
393
+ mask_down = masks[-1]
394
+ x = resnet(x, mask_down, t)
395
+ x = rearrange(x, "b c t -> b t c")
396
+ mask_down = rearrange(mask_down, "b 1 t -> b t")
397
+ for transformer_block in transformer_blocks:
398
+ x = transformer_block(
399
+ hidden_states=x,
400
+ attention_mask=mask_down,
401
+ timestep=t,
402
+ )
403
+ x = rearrange(x, "b t c -> b c t")
404
+ mask_down = rearrange(mask_down, "b t -> b 1 t")
405
+ hiddens.append(x) # Save hidden states for skip connections
406
+ x = downsample(x * mask_down)
407
+ masks.append(mask_down[:, :, ::2])
408
+
409
+ masks = masks[:-1]
410
+ mask_mid = masks[-1]
411
+
412
+ for resnet, transformer_blocks in self.mid_blocks:
413
+ x = resnet(x, mask_mid, t)
414
+ x = rearrange(x, "b c t -> b t c")
415
+ mask_mid = rearrange(mask_mid, "b 1 t -> b t")
416
+ for transformer_block in transformer_blocks:
417
+ x = transformer_block(
418
+ hidden_states=x,
419
+ attention_mask=mask_mid,
420
+ timestep=t,
421
+ )
422
+ x = rearrange(x, "b t c -> b c t")
423
+ mask_mid = rearrange(mask_mid, "b t -> b 1 t")
424
+
425
+ for resnet, transformer_blocks, upsample in self.up_blocks:
426
+ mask_up = masks.pop()
427
+ x = resnet(pack([x, hiddens.pop()], "b * t")[0], mask_up, t)
428
+ x = rearrange(x, "b c t -> b t c")
429
+ mask_up = rearrange(mask_up, "b 1 t -> b t")
430
+ for transformer_block in transformer_blocks:
431
+ x = transformer_block(
432
+ hidden_states=x,
433
+ attention_mask=mask_up,
434
+ timestep=t,
435
+ )
436
+ x = rearrange(x, "b t c -> b c t")
437
+ mask_up = rearrange(mask_up, "b t -> b 1 t")
438
+ x = upsample(x * mask_up)
439
+
440
+ x = self.final_block(x, mask_up)
441
+ output = self.final_proj(x * mask_up)
442
+
443
+ return output * mask
chatterbox/models/s3gen/matcha/flow_matching.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+
6
+ from .decoder import Decoder
7
+
8
+
9
+ class BASECFM(torch.nn.Module, ABC):
10
+ def __init__(
11
+ self,
12
+ n_feats,
13
+ cfm_params,
14
+ n_spks=1,
15
+ spk_emb_dim=128,
16
+ ):
17
+ super().__init__()
18
+ self.n_feats = n_feats
19
+ self.n_spks = n_spks
20
+ self.spk_emb_dim = spk_emb_dim
21
+ self.solver = cfm_params.solver
22
+ if hasattr(cfm_params, "sigma_min"):
23
+ self.sigma_min = cfm_params.sigma_min
24
+ else:
25
+ self.sigma_min = 1e-4
26
+
27
+ self.estimator = None
28
+
29
+ @torch.inference_mode()
30
+ def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
31
+ """Forward diffusion
32
+
33
+ Args:
34
+ mu (torch.Tensor): output of encoder
35
+ shape: (batch_size, n_feats, mel_timesteps)
36
+ mask (torch.Tensor): output_mask
37
+ shape: (batch_size, 1, mel_timesteps)
38
+ n_timesteps (int): number of diffusion steps
39
+ temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
40
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
41
+ shape: (batch_size, spk_emb_dim)
42
+ cond: Not used but kept for future purposes
43
+
44
+ Returns:
45
+ sample: generated mel-spectrogram
46
+ shape: (batch_size, n_feats, mel_timesteps)
47
+ """
48
+ z = torch.randn_like(mu) * temperature
49
+ t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
50
+ return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
51
+
52
+ def solve_euler(self, x, t_span, mu, mask, spks, cond):
53
+ """
54
+ Fixed euler solver for ODEs.
55
+ Args:
56
+ x (torch.Tensor): random noise
57
+ t_span (torch.Tensor): n_timesteps interpolated
58
+ shape: (n_timesteps + 1,)
59
+ mu (torch.Tensor): output of encoder
60
+ shape: (batch_size, n_feats, mel_timesteps)
61
+ mask (torch.Tensor): output_mask
62
+ shape: (batch_size, 1, mel_timesteps)
63
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
64
+ shape: (batch_size, spk_emb_dim)
65
+ cond: Not used but kept for future purposes
66
+ """
67
+ t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
68
+
69
+ # I am storing this because I can later plot it by putting a debugger here and saving it to a file
70
+ # Or in future might add like a return_all_steps flag
71
+ sol = []
72
+
73
+ for step in range(1, len(t_span)):
74
+ dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
75
+
76
+ x = x + dt * dphi_dt
77
+ t = t + dt
78
+ sol.append(x)
79
+ if step < len(t_span) - 1:
80
+ dt = t_span[step + 1] - t
81
+
82
+ return sol[-1]
83
+
84
+ def compute_loss(self, x1, mask, mu, spks=None, cond=None):
85
+ """Computes diffusion loss
86
+
87
+ Args:
88
+ x1 (torch.Tensor): Target
89
+ shape: (batch_size, n_feats, mel_timesteps)
90
+ mask (torch.Tensor): target mask
91
+ shape: (batch_size, 1, mel_timesteps)
92
+ mu (torch.Tensor): output of encoder
93
+ shape: (batch_size, n_feats, mel_timesteps)
94
+ spks (torch.Tensor, optional): speaker embedding. Defaults to None.
95
+ shape: (batch_size, spk_emb_dim)
96
+
97
+ Returns:
98
+ loss: conditional flow matching loss
99
+ y: conditional flow
100
+ shape: (batch_size, n_feats, mel_timesteps)
101
+ """
102
+ b, _, t = mu.shape
103
+
104
+ # random timestep
105
+ t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
106
+ # sample noise p(x_0)
107
+ z = torch.randn_like(x1)
108
+
109
+ y = (1 - (1 - self.sigma_min) * t) * z + t * x1
110
+ u = x1 - (1 - self.sigma_min) * z
111
+
112
+ loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), spks), u, reduction="sum") / (
113
+ torch.sum(mask) * u.shape[1]
114
+ )
115
+ return loss, y
116
+
117
+
118
+ class CFM(BASECFM):
119
+ def __init__(self, in_channels, out_channel, cfm_params, decoder_params, n_spks=1, spk_emb_dim=64):
120
+ super().__init__(
121
+ n_feats=in_channels,
122
+ cfm_params=cfm_params,
123
+ n_spks=n_spks,
124
+ spk_emb_dim=spk_emb_dim,
125
+ )
126
+
127
+ in_channels = in_channels + (spk_emb_dim if n_spks > 1 else 0)
128
+ # Just change the architecture of the estimator here
129
+ self.estimator = Decoder(in_channels=in_channels, out_channels=out_channel, **decoder_params)
chatterbox/models/s3gen/matcha/text_encoder.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/jaywalnut310/glow-tts """
2
+
3
+ import math
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ from einops import rearrange
8
+
9
+
10
+ def sequence_mask(length, max_length=None):
11
+ if max_length is None:
12
+ max_length = length.max()
13
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
14
+ return x.unsqueeze(0) < length.unsqueeze(1)
15
+
16
+
17
+
18
+ class LayerNorm(nn.Module):
19
+ def __init__(self, channels, eps=1e-4):
20
+ super().__init__()
21
+ self.channels = channels
22
+ self.eps = eps
23
+
24
+ self.gamma = torch.nn.Parameter(torch.ones(channels))
25
+ self.beta = torch.nn.Parameter(torch.zeros(channels))
26
+
27
+ def forward(self, x):
28
+ n_dims = len(x.shape)
29
+ mean = torch.mean(x, 1, keepdim=True)
30
+ variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
31
+
32
+ x = (x - mean) * torch.rsqrt(variance + self.eps)
33
+
34
+ shape = [1, -1] + [1] * (n_dims - 2)
35
+ x = x * self.gamma.view(*shape) + self.beta.view(*shape)
36
+ return x
37
+
38
+
39
+ class ConvReluNorm(nn.Module):
40
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
41
+ super().__init__()
42
+ self.in_channels = in_channels
43
+ self.hidden_channels = hidden_channels
44
+ self.out_channels = out_channels
45
+ self.kernel_size = kernel_size
46
+ self.n_layers = n_layers
47
+ self.p_dropout = p_dropout
48
+
49
+ self.conv_layers = torch.nn.ModuleList()
50
+ self.norm_layers = torch.nn.ModuleList()
51
+ self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
52
+ self.norm_layers.append(LayerNorm(hidden_channels))
53
+ self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout))
54
+ for _ in range(n_layers - 1):
55
+ self.conv_layers.append(
56
+ torch.nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)
57
+ )
58
+ self.norm_layers.append(LayerNorm(hidden_channels))
59
+ self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
60
+ self.proj.weight.data.zero_()
61
+ self.proj.bias.data.zero_()
62
+
63
+ def forward(self, x, x_mask):
64
+ x_org = x
65
+ for i in range(self.n_layers):
66
+ x = self.conv_layers[i](x * x_mask)
67
+ x = self.norm_layers[i](x)
68
+ x = self.relu_drop(x)
69
+ x = x_org + self.proj(x)
70
+ return x * x_mask
71
+
72
+
73
+ class DurationPredictor(nn.Module):
74
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
75
+ super().__init__()
76
+ self.in_channels = in_channels
77
+ self.filter_channels = filter_channels
78
+ self.p_dropout = p_dropout
79
+
80
+ self.drop = torch.nn.Dropout(p_dropout)
81
+ self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
82
+ self.norm_1 = LayerNorm(filter_channels)
83
+ self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
84
+ self.norm_2 = LayerNorm(filter_channels)
85
+ self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
86
+
87
+ def forward(self, x, x_mask):
88
+ x = self.conv_1(x * x_mask)
89
+ x = torch.relu(x)
90
+ x = self.norm_1(x)
91
+ x = self.drop(x)
92
+ x = self.conv_2(x * x_mask)
93
+ x = torch.relu(x)
94
+ x = self.norm_2(x)
95
+ x = self.drop(x)
96
+ x = self.proj(x * x_mask)
97
+ return x * x_mask
98
+
99
+
100
+ class RotaryPositionalEmbeddings(nn.Module):
101
+ """
102
+ ## RoPE module
103
+
104
+ Rotary encoding transforms pairs of features by rotating in the 2D plane.
105
+ That is, it organizes the $d$ features as $\frac{d}{2}$ pairs.
106
+ Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it
107
+ by an angle depending on the position of the token.
108
+ """
109
+
110
+ def __init__(self, d: int, base: int = 10_000):
111
+ r"""
112
+ * `d` is the number of features $d$
113
+ * `base` is the constant used for calculating $\Theta$
114
+ """
115
+ super().__init__()
116
+
117
+ self.base = base
118
+ self.d = int(d)
119
+ self.cos_cached = None
120
+ self.sin_cached = None
121
+
122
+ def _build_cache(self, x: torch.Tensor):
123
+ r"""
124
+ Cache $\cos$ and $\sin$ values
125
+ """
126
+ # Return if cache is already built
127
+ if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]:
128
+ return
129
+
130
+ # Get sequence length
131
+ seq_len = x.shape[0]
132
+
133
+ # $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
134
+ theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device)
135
+
136
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
137
+ seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)
138
+
139
+ # Calculate the product of position index and $\theta_i$
140
+ idx_theta = torch.einsum("n,d->nd", seq_idx, theta)
141
+
142
+ # Concatenate so that for row $m$ we have
143
+ # $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$
144
+ idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1)
145
+
146
+ # Cache them
147
+ self.cos_cached = idx_theta2.cos()[:, None, None, :]
148
+ self.sin_cached = idx_theta2.sin()[:, None, None, :]
149
+
150
+ def _neg_half(self, x: torch.Tensor):
151
+ # $\frac{d}{2}$
152
+ d_2 = self.d // 2
153
+
154
+ # Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
155
+ return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)
156
+
157
+ def forward(self, x: torch.Tensor):
158
+ """
159
+ * `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]`
160
+ """
161
+ # Cache $\cos$ and $\sin$ values
162
+ x = rearrange(x, "b h t d -> t b h d")
163
+
164
+ self._build_cache(x)
165
+
166
+ # Split the features, we can choose to apply rotary embeddings only to a partial set of features.
167
+ x_rope, x_pass = x[..., : self.d], x[..., self.d :]
168
+
169
+ # Calculate
170
+ # $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
171
+ neg_half_x = self._neg_half(x_rope)
172
+
173
+ x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]])
174
+
175
+ return rearrange(torch.cat((x_rope, x_pass), dim=-1), "t b h d -> b h t d")
176
+
177
+
178
+ class MultiHeadAttention(nn.Module):
179
+ def __init__(
180
+ self,
181
+ channels,
182
+ out_channels,
183
+ n_heads,
184
+ heads_share=True,
185
+ p_dropout=0.0,
186
+ proximal_bias=False,
187
+ proximal_init=False,
188
+ ):
189
+ super().__init__()
190
+ assert channels % n_heads == 0
191
+
192
+ self.channels = channels
193
+ self.out_channels = out_channels
194
+ self.n_heads = n_heads
195
+ self.heads_share = heads_share
196
+ self.proximal_bias = proximal_bias
197
+ self.p_dropout = p_dropout
198
+ self.attn = None
199
+
200
+ self.k_channels = channels // n_heads
201
+ self.conv_q = torch.nn.Conv1d(channels, channels, 1)
202
+ self.conv_k = torch.nn.Conv1d(channels, channels, 1)
203
+ self.conv_v = torch.nn.Conv1d(channels, channels, 1)
204
+
205
+ # from https://nn.labml.ai/transformers/rope/index.html
206
+ self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
207
+ self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
208
+
209
+ self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
210
+ self.drop = torch.nn.Dropout(p_dropout)
211
+
212
+ torch.nn.init.xavier_uniform_(self.conv_q.weight)
213
+ torch.nn.init.xavier_uniform_(self.conv_k.weight)
214
+ if proximal_init:
215
+ self.conv_k.weight.data.copy_(self.conv_q.weight.data)
216
+ self.conv_k.bias.data.copy_(self.conv_q.bias.data)
217
+ torch.nn.init.xavier_uniform_(self.conv_v.weight)
218
+
219
+ def forward(self, x, c, attn_mask=None):
220
+ q = self.conv_q(x)
221
+ k = self.conv_k(c)
222
+ v = self.conv_v(c)
223
+
224
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
225
+
226
+ x = self.conv_o(x)
227
+ return x
228
+
229
+ def attention(self, query, key, value, mask=None):
230
+ b, d, t_s, t_t = (*key.size(), query.size(2))
231
+ query = rearrange(query, "b (h c) t-> b h t c", h=self.n_heads)
232
+ key = rearrange(key, "b (h c) t-> b h t c", h=self.n_heads)
233
+ value = rearrange(value, "b (h c) t-> b h t c", h=self.n_heads)
234
+
235
+ query = self.query_rotary_pe(query)
236
+ key = self.key_rotary_pe(key)
237
+
238
+ scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
239
+
240
+ if self.proximal_bias:
241
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
242
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
243
+ if mask is not None:
244
+ scores = scores.masked_fill(mask == 0, -1e4)
245
+ p_attn = torch.nn.functional.softmax(scores, dim=-1)
246
+ p_attn = self.drop(p_attn)
247
+ output = torch.matmul(p_attn, value)
248
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t)
249
+ return output, p_attn
250
+
251
+ @staticmethod
252
+ def _attention_bias_proximal(length):
253
+ r = torch.arange(length, dtype=torch.float32)
254
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
255
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
256
+
257
+
258
+ class FFN(nn.Module):
259
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0):
260
+ super().__init__()
261
+ self.in_channels = in_channels
262
+ self.out_channels = out_channels
263
+ self.filter_channels = filter_channels
264
+ self.kernel_size = kernel_size
265
+ self.p_dropout = p_dropout
266
+
267
+ self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
268
+ self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2)
269
+ self.drop = torch.nn.Dropout(p_dropout)
270
+
271
+ def forward(self, x, x_mask):
272
+ x = self.conv_1(x * x_mask)
273
+ x = torch.relu(x)
274
+ x = self.drop(x)
275
+ x = self.conv_2(x * x_mask)
276
+ return x * x_mask
277
+
278
+
279
+ class Encoder(nn.Module):
280
+ def __init__(
281
+ self,
282
+ hidden_channels,
283
+ filter_channels,
284
+ n_heads,
285
+ n_layers,
286
+ kernel_size=1,
287
+ p_dropout=0.0,
288
+ **kwargs,
289
+ ):
290
+ super().__init__()
291
+ self.hidden_channels = hidden_channels
292
+ self.filter_channels = filter_channels
293
+ self.n_heads = n_heads
294
+ self.n_layers = n_layers
295
+ self.kernel_size = kernel_size
296
+ self.p_dropout = p_dropout
297
+
298
+ self.drop = torch.nn.Dropout(p_dropout)
299
+ self.attn_layers = torch.nn.ModuleList()
300
+ self.norm_layers_1 = torch.nn.ModuleList()
301
+ self.ffn_layers = torch.nn.ModuleList()
302
+ self.norm_layers_2 = torch.nn.ModuleList()
303
+ for _ in range(self.n_layers):
304
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
305
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
306
+ self.ffn_layers.append(
307
+ FFN(
308
+ hidden_channels,
309
+ hidden_channels,
310
+ filter_channels,
311
+ kernel_size,
312
+ p_dropout=p_dropout,
313
+ )
314
+ )
315
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
316
+
317
+ def forward(self, x, x_mask):
318
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
319
+ for i in range(self.n_layers):
320
+ x = x * x_mask
321
+ y = self.attn_layers[i](x, x, attn_mask)
322
+ y = self.drop(y)
323
+ x = self.norm_layers_1[i](x + y)
324
+ y = self.ffn_layers[i](x, x_mask)
325
+ y = self.drop(y)
326
+ x = self.norm_layers_2[i](x + y)
327
+ x = x * x_mask
328
+ return x
329
+
330
+
331
+ class TextEncoder(nn.Module):
332
+ def __init__(
333
+ self,
334
+ encoder_type,
335
+ encoder_params,
336
+ duration_predictor_params,
337
+ n_vocab,
338
+ n_spks=1,
339
+ spk_emb_dim=128,
340
+ ):
341
+ super().__init__()
342
+ self.encoder_type = encoder_type
343
+ self.n_vocab = n_vocab
344
+ self.n_feats = encoder_params.n_feats
345
+ self.n_channels = encoder_params.n_channels
346
+ self.spk_emb_dim = spk_emb_dim
347
+ self.n_spks = n_spks
348
+
349
+ self.emb = torch.nn.Embedding(n_vocab, self.n_channels)
350
+ torch.nn.init.normal_(self.emb.weight, 0.0, self.n_channels**-0.5)
351
+
352
+ if encoder_params.prenet:
353
+ self.prenet = ConvReluNorm(
354
+ self.n_channels,
355
+ self.n_channels,
356
+ self.n_channels,
357
+ kernel_size=5,
358
+ n_layers=3,
359
+ p_dropout=0.5,
360
+ )
361
+ else:
362
+ self.prenet = lambda x, x_mask: x
363
+
364
+ self.encoder = Encoder(
365
+ encoder_params.n_channels + (spk_emb_dim if n_spks > 1 else 0),
366
+ encoder_params.filter_channels,
367
+ encoder_params.n_heads,
368
+ encoder_params.n_layers,
369
+ encoder_params.kernel_size,
370
+ encoder_params.p_dropout,
371
+ )
372
+
373
+ self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
374
+ self.proj_w = DurationPredictor(
375
+ self.n_channels + (spk_emb_dim if n_spks > 1 else 0),
376
+ duration_predictor_params.filter_channels_dp,
377
+ duration_predictor_params.kernel_size,
378
+ duration_predictor_params.p_dropout,
379
+ )
380
+
381
+ def forward(self, x, x_lengths, spks=None):
382
+ """Run forward pass to the transformer based encoder and duration predictor
383
+
384
+ Args:
385
+ x (torch.Tensor): text input
386
+ shape: (batch_size, max_text_length)
387
+ x_lengths (torch.Tensor): text input lengths
388
+ shape: (batch_size,)
389
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
390
+ shape: (batch_size,)
391
+
392
+ Returns:
393
+ mu (torch.Tensor): average output of the encoder
394
+ shape: (batch_size, n_feats, max_text_length)
395
+ logw (torch.Tensor): log duration predicted by the duration predictor
396
+ shape: (batch_size, 1, max_text_length)
397
+ x_mask (torch.Tensor): mask for the text input
398
+ shape: (batch_size, 1, max_text_length)
399
+ """
400
+ x = self.emb(x) * math.sqrt(self.n_channels)
401
+ x = torch.transpose(x, 1, -1)
402
+ x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
403
+
404
+ x = self.prenet(x, x_mask)
405
+ if self.n_spks > 1:
406
+ x = torch.cat([x, spks.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1)
407
+ x = self.encoder(x, x_mask)
408
+ mu = self.proj_m(x) * x_mask
409
+
410
+ x_dp = torch.detach(x)
411
+ logw = self.proj_w(x_dp, x_mask)
412
+
413
+ return mu, logw, x_mask
chatterbox/models/s3gen/matcha/transformer.py ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, Optional
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ from diffusers.models.attention import (
6
+ GEGLU,
7
+ GELU,
8
+ AdaLayerNorm,
9
+ AdaLayerNormZero,
10
+ ApproximateGELU,
11
+ )
12
+ from diffusers.models.attention_processor import Attention
13
+ from diffusers.models.lora import LoRACompatibleLinear
14
+ from diffusers.utils.torch_utils import maybe_allow_in_graph
15
+
16
+
17
+ class SnakeBeta(nn.Module):
18
+ """
19
+ A modified Snake function which uses separate parameters for the magnitude of the periodic components
20
+ Shape:
21
+ - Input: (B, C, T)
22
+ - Output: (B, C, T), same shape as the input
23
+ Parameters:
24
+ - alpha - trainable parameter that controls frequency
25
+ - beta - trainable parameter that controls magnitude
26
+ References:
27
+ - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
28
+ https://arxiv.org/abs/2006.08195
29
+ Examples:
30
+ >>> a1 = snakebeta(256)
31
+ >>> x = torch.randn(256)
32
+ >>> x = a1(x)
33
+ """
34
+
35
+ def __init__(self, in_features, out_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
36
+ """
37
+ Initialization.
38
+ INPUT:
39
+ - in_features: shape of the input
40
+ - alpha - trainable parameter that controls frequency
41
+ - beta - trainable parameter that controls magnitude
42
+ alpha is initialized to 1 by default, higher values = higher-frequency.
43
+ beta is initialized to 1 by default, higher values = higher-magnitude.
44
+ alpha will be trained along with the rest of your model.
45
+ """
46
+ super().__init__()
47
+ self.in_features = out_features if isinstance(out_features, list) else [out_features]
48
+ self.proj = LoRACompatibleLinear(in_features, out_features)
49
+
50
+ # initialize alpha
51
+ self.alpha_logscale = alpha_logscale
52
+ if self.alpha_logscale: # log scale alphas initialized to zeros
53
+ self.alpha = nn.Parameter(torch.zeros(self.in_features) * alpha)
54
+ self.beta = nn.Parameter(torch.zeros(self.in_features) * alpha)
55
+ else: # linear scale alphas initialized to ones
56
+ self.alpha = nn.Parameter(torch.ones(self.in_features) * alpha)
57
+ self.beta = nn.Parameter(torch.ones(self.in_features) * alpha)
58
+
59
+ self.alpha.requires_grad = alpha_trainable
60
+ self.beta.requires_grad = alpha_trainable
61
+
62
+ self.no_div_by_zero = 0.000000001
63
+
64
+ def forward(self, x):
65
+ """
66
+ Forward pass of the function.
67
+ Applies the function to the input elementwise.
68
+ SnakeBeta ∶= x + 1/b * sin^2 (xa)
69
+ """
70
+ x = self.proj(x)
71
+ if self.alpha_logscale:
72
+ alpha = torch.exp(self.alpha)
73
+ beta = torch.exp(self.beta)
74
+ else:
75
+ alpha = self.alpha
76
+ beta = self.beta
77
+
78
+ x = x + (1.0 / (beta + self.no_div_by_zero)) * torch.pow(torch.sin(x * alpha), 2)
79
+
80
+ return x
81
+
82
+
83
+ class FeedForward(nn.Module):
84
+ r"""
85
+ A feed-forward layer.
86
+
87
+ Parameters:
88
+ dim (`int`): The number of channels in the input.
89
+ dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
90
+ mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
91
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
92
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
93
+ final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
94
+ """
95
+
96
+ def __init__(
97
+ self,
98
+ dim: int,
99
+ dim_out: Optional[int] = None,
100
+ mult: int = 4,
101
+ dropout: float = 0.0,
102
+ activation_fn: str = "geglu",
103
+ final_dropout: bool = False,
104
+ ):
105
+ super().__init__()
106
+ inner_dim = int(dim * mult)
107
+ dim_out = dim_out if dim_out is not None else dim
108
+
109
+ if activation_fn == "gelu":
110
+ act_fn = GELU(dim, inner_dim)
111
+ if activation_fn == "gelu-approximate":
112
+ act_fn = GELU(dim, inner_dim, approximate="tanh")
113
+ elif activation_fn == "geglu":
114
+ act_fn = GEGLU(dim, inner_dim)
115
+ elif activation_fn == "geglu-approximate":
116
+ act_fn = ApproximateGELU(dim, inner_dim)
117
+ elif activation_fn == "snakebeta":
118
+ act_fn = SnakeBeta(dim, inner_dim)
119
+
120
+ self.net = nn.ModuleList([])
121
+ # project in
122
+ self.net.append(act_fn)
123
+ # project dropout
124
+ self.net.append(nn.Dropout(dropout))
125
+ # project out
126
+ self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
127
+ # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
128
+ if final_dropout:
129
+ self.net.append(nn.Dropout(dropout))
130
+
131
+ def forward(self, hidden_states):
132
+ for module in self.net:
133
+ hidden_states = module(hidden_states)
134
+ return hidden_states
135
+
136
+
137
+ @maybe_allow_in_graph
138
+ class BasicTransformerBlock(nn.Module):
139
+ r"""
140
+ A basic Transformer block.
141
+
142
+ Parameters:
143
+ dim (`int`): The number of channels in the input and output.
144
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
145
+ attention_head_dim (`int`): The number of channels in each head.
146
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
147
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
148
+ only_cross_attention (`bool`, *optional*):
149
+ Whether to use only cross-attention layers. In this case two cross attention layers are used.
150
+ double_self_attention (`bool`, *optional*):
151
+ Whether to use two self-attention layers. In this case no cross attention layers are used.
152
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
153
+ num_embeds_ada_norm (:
154
+ obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
155
+ attention_bias (:
156
+ obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
157
+ """
158
+
159
+ def __init__(
160
+ self,
161
+ dim: int,
162
+ num_attention_heads: int,
163
+ attention_head_dim: int,
164
+ dropout=0.0,
165
+ cross_attention_dim: Optional[int] = None,
166
+ activation_fn: str = "geglu",
167
+ num_embeds_ada_norm: Optional[int] = None,
168
+ attention_bias: bool = False,
169
+ only_cross_attention: bool = False,
170
+ double_self_attention: bool = False,
171
+ upcast_attention: bool = False,
172
+ norm_elementwise_affine: bool = True,
173
+ norm_type: str = "layer_norm",
174
+ final_dropout: bool = False,
175
+ ):
176
+ super().__init__()
177
+ self.only_cross_attention = only_cross_attention
178
+
179
+ self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
180
+ self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
181
+
182
+ if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
183
+ raise ValueError(
184
+ f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
185
+ f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
186
+ )
187
+
188
+ # Define 3 blocks. Each block has its own normalization layer.
189
+ # 1. Self-Attn
190
+ if self.use_ada_layer_norm:
191
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
192
+ elif self.use_ada_layer_norm_zero:
193
+ self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
194
+ else:
195
+ self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
196
+ self.attn1 = Attention(
197
+ query_dim=dim,
198
+ heads=num_attention_heads,
199
+ dim_head=attention_head_dim,
200
+ dropout=dropout,
201
+ bias=attention_bias,
202
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
203
+ upcast_attention=upcast_attention,
204
+ )
205
+
206
+ # 2. Cross-Attn
207
+ if cross_attention_dim is not None or double_self_attention:
208
+ # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
209
+ # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
210
+ # the second cross attention block.
211
+ self.norm2 = (
212
+ AdaLayerNorm(dim, num_embeds_ada_norm)
213
+ if self.use_ada_layer_norm
214
+ else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
215
+ )
216
+ self.attn2 = Attention(
217
+ query_dim=dim,
218
+ cross_attention_dim=cross_attention_dim if not double_self_attention else None,
219
+ heads=num_attention_heads,
220
+ dim_head=attention_head_dim,
221
+ dropout=dropout,
222
+ bias=attention_bias,
223
+ upcast_attention=upcast_attention,
224
+ # scale_qk=False, # uncomment this to not to use flash attention
225
+ ) # is self-attn if encoder_hidden_states is none
226
+ else:
227
+ self.norm2 = None
228
+ self.attn2 = None
229
+
230
+ # 3. Feed-forward
231
+ self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
232
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
233
+
234
+ # let chunk size default to None
235
+ self._chunk_size = None
236
+ self._chunk_dim = 0
237
+
238
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
239
+ # Sets chunk feed-forward
240
+ self._chunk_size = chunk_size
241
+ self._chunk_dim = dim
242
+
243
+ def forward(
244
+ self,
245
+ hidden_states: torch.FloatTensor,
246
+ attention_mask: Optional[torch.FloatTensor] = None,
247
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
248
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
249
+ timestep: Optional[torch.LongTensor] = None,
250
+ cross_attention_kwargs: Dict[str, Any] = None,
251
+ class_labels: Optional[torch.LongTensor] = None,
252
+ ):
253
+ # Notice that normalization is always applied before the real computation in the following blocks.
254
+ # 1. Self-Attention
255
+ if self.use_ada_layer_norm:
256
+ norm_hidden_states = self.norm1(hidden_states, timestep)
257
+ elif self.use_ada_layer_norm_zero:
258
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
259
+ hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
260
+ )
261
+ else:
262
+ norm_hidden_states = self.norm1(hidden_states)
263
+
264
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
265
+
266
+ attn_output = self.attn1(
267
+ norm_hidden_states,
268
+ encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
269
+ attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask,
270
+ **cross_attention_kwargs,
271
+ )
272
+ if self.use_ada_layer_norm_zero:
273
+ attn_output = gate_msa.unsqueeze(1) * attn_output
274
+ hidden_states = attn_output + hidden_states
275
+
276
+ # 2. Cross-Attention
277
+ if self.attn2 is not None:
278
+ norm_hidden_states = (
279
+ self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
280
+ )
281
+
282
+ attn_output = self.attn2(
283
+ norm_hidden_states,
284
+ encoder_hidden_states=encoder_hidden_states,
285
+ attention_mask=encoder_attention_mask,
286
+ **cross_attention_kwargs,
287
+ )
288
+ hidden_states = attn_output + hidden_states
289
+
290
+ # 3. Feed-forward
291
+ norm_hidden_states = self.norm3(hidden_states)
292
+
293
+ if self.use_ada_layer_norm_zero:
294
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
295
+
296
+ if self._chunk_size is not None:
297
+ # "feed_forward_chunk_size" can be used to save memory
298
+ if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
299
+ raise ValueError(
300
+ f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
301
+ )
302
+
303
+ num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
304
+ ff_output = torch.cat(
305
+ [self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
306
+ dim=self._chunk_dim,
307
+ )
308
+ else:
309
+ ff_output = self.ff(norm_hidden_states)
310
+
311
+ if self.use_ada_layer_norm_zero:
312
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
313
+
314
+ hidden_states = ff_output + hidden_states
315
+
316
+ return hidden_states
chatterbox/models/s3gen/s3gen.py ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified from CosyVoice https://github.com/FunAudioLLM/CosyVoice
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import logging
16
+
17
+ import numpy as np
18
+ import torch
19
+ import torchaudio as ta
20
+ from functools import lru_cache
21
+ from typing import Optional
22
+
23
+ from ..s3tokenizer import S3_SR, SPEECH_VOCAB_SIZE, S3Tokenizer
24
+ from .const import S3GEN_SR
25
+ from .flow import CausalMaskedDiffWithXvec
26
+ from .xvector import CAMPPlus
27
+ from .utils.mel import mel_spectrogram
28
+ from .f0_predictor import ConvRNNF0Predictor
29
+ from .hifigan import HiFTGenerator
30
+ from .transformer.upsample_encoder import UpsampleConformerEncoder
31
+ from .flow_matching import CausalConditionalCFM
32
+ from .decoder import ConditionalDecoder
33
+ from .configs import CFM_PARAMS
34
+
35
+
36
+ def drop_invalid_tokens(x):
37
+ assert len(x.shape) <= 2 and x.shape[0] == 1, "only batch size of one allowed for now"
38
+ return x[x < SPEECH_VOCAB_SIZE]
39
+
40
+
41
+ # TODO: global resampler cache
42
+ @lru_cache(100)
43
+ def get_resampler(src_sr, dst_sr, device):
44
+ return ta.transforms.Resample(src_sr, dst_sr).to(device)
45
+
46
+
47
+ class S3Token2Mel(torch.nn.Module):
48
+ """
49
+ S3Gen's CFM decoder maps S3 speech tokens to mel-spectrograms.
50
+
51
+ TODO: make these modules configurable?
52
+ """
53
+ def __init__(self, meanflow=False):
54
+ super().__init__()
55
+ self.tokenizer = S3Tokenizer("speech_tokenizer_v2_25hz")
56
+ self.mel_extractor = mel_spectrogram # TODO: make it a torch module?
57
+ self.speaker_encoder = CAMPPlus(
58
+ # NOTE: This doesn't affect inference. It turns off activation checkpointing
59
+ # (a training optimization), which causes a crazy DDP error with accelerate
60
+ memory_efficient=False,
61
+ )
62
+ self.meanflow = meanflow
63
+
64
+ encoder = UpsampleConformerEncoder(
65
+ output_size=512,
66
+ attention_heads=8,
67
+ linear_units=2048,
68
+ num_blocks=6,
69
+ dropout_rate=0.1,
70
+ positional_dropout_rate=0.1,
71
+ attention_dropout_rate=0.1,
72
+ normalize_before=True,
73
+ input_layer='linear',
74
+ pos_enc_layer_type='rel_pos_espnet',
75
+ selfattention_layer_type='rel_selfattn',
76
+ input_size=512,
77
+ use_cnn_module=False,
78
+ macaron_style=False,
79
+ )
80
+
81
+ estimator = ConditionalDecoder(
82
+ in_channels=320,
83
+ out_channels=80,
84
+ causal=True,
85
+ channels=[256],
86
+ dropout=0.0,
87
+ attention_head_dim=64,
88
+ n_blocks=4,
89
+ num_mid_blocks=12,
90
+ num_heads=8,
91
+ act_fn='gelu',
92
+ meanflow=self.meanflow,
93
+ )
94
+ cfm_params = CFM_PARAMS
95
+ decoder = CausalConditionalCFM(
96
+ spk_emb_dim=80,
97
+ cfm_params=cfm_params,
98
+ estimator=estimator,
99
+ )
100
+
101
+ self.flow = CausalMaskedDiffWithXvec(
102
+ encoder=encoder,
103
+ decoder=decoder
104
+ )
105
+
106
+ self.resamplers = {}
107
+
108
+ @property
109
+ def device(self):
110
+ params = self.tokenizer.parameters()
111
+ return next(params).device
112
+
113
+ @property
114
+ def dtype(self):
115
+ params = self.flow.parameters()
116
+ return next(params).dtype
117
+
118
+ def embed_ref(
119
+ self,
120
+ ref_wav: torch.Tensor,
121
+ ref_sr: int,
122
+ device="auto",
123
+ ref_fade_out=True,
124
+ ):
125
+ device = self.device if device == "auto" else device
126
+ if isinstance(ref_wav, np.ndarray):
127
+ ref_wav = torch.from_numpy(ref_wav).float()
128
+
129
+ if ref_wav.device != device:
130
+ ref_wav = ref_wav.to(device)
131
+
132
+ if len(ref_wav.shape) == 1:
133
+ ref_wav = ref_wav.unsqueeze(0) # (B, L)
134
+
135
+ if ref_wav.size(1) > 10 * ref_sr:
136
+ print("WARNING: s3gen received ref longer than 10s")
137
+
138
+ ref_wav_24 = ref_wav
139
+ if ref_sr != S3GEN_SR:
140
+ ref_wav_24 = get_resampler(ref_sr, S3GEN_SR, device)(ref_wav)
141
+ ref_wav_24 = ref_wav_24.to(device=device, dtype=self.dtype)
142
+
143
+ ref_mels_24 = self.mel_extractor(ref_wav_24).transpose(1, 2).to(dtype=self.dtype)
144
+ ref_mels_24_len = None
145
+
146
+ # Resample to 16kHz
147
+ ref_wav_16 = ref_wav
148
+ if ref_sr != S3_SR:
149
+ ref_wav_16 = get_resampler(ref_sr, S3_SR, device)(ref_wav)
150
+
151
+ # Speaker embedding
152
+ ref_x_vector = self.speaker_encoder.inference(ref_wav_16.to(dtype=self.dtype))
153
+
154
+ # Tokenize 16khz reference
155
+ ref_speech_tokens, ref_speech_token_lens = self.tokenizer(ref_wav_16.float())
156
+
157
+ # Make sure mel_len = 2 * stoken_len (happens when the input is not padded to multiple of 40ms)
158
+ if ref_mels_24.shape[1] != 2 * ref_speech_tokens.shape[1]:
159
+ logging.warning(
160
+ "Reference mel length is not equal to 2 * reference token length.\n"
161
+ )
162
+ ref_speech_tokens = ref_speech_tokens[:, :ref_mels_24.shape[1] // 2]
163
+ ref_speech_token_lens[0] = ref_speech_tokens.shape[1]
164
+
165
+ return dict(
166
+ prompt_token=ref_speech_tokens.to(device),
167
+ prompt_token_len=ref_speech_token_lens,
168
+ prompt_feat=ref_mels_24,
169
+ prompt_feat_len=ref_mels_24_len,
170
+ embedding=ref_x_vector,
171
+ )
172
+
173
+ def forward(
174
+ self,
175
+ speech_tokens: torch.LongTensor,
176
+ # locally-computed ref embedding (mutex with ref_dict)
177
+ ref_wav: Optional[torch.Tensor],
178
+ ref_sr: Optional[int],
179
+ # pre-computed ref embedding (prod API)
180
+ ref_dict: Optional[dict] = None,
181
+ n_cfm_timesteps = None,
182
+ finalize: bool = False,
183
+ speech_token_lens=None,
184
+ noised_mels=None,
185
+ ):
186
+ """
187
+ Generate waveforms from S3 speech tokens and a reference waveform, which the speaker timbre is inferred from.
188
+
189
+ NOTE:
190
+ - The speaker encoder accepts 16 kHz waveform.
191
+ - S3TokenizerV2 accepts 16 kHz waveform.
192
+ - The mel-spectrogram for the reference assumes 24 kHz input signal.
193
+ - This function is designed for batch_size=1 only.
194
+
195
+ Args
196
+ ----
197
+ - `speech_tokens`: S3 speech tokens [B=1, T]
198
+ - `ref_wav`: reference waveform (`torch.Tensor` with shape=[B=1, T])
199
+ - `ref_sr`: reference sample rate
200
+ - `finalize`: whether streaming is finished or not. Note that if False, the last 3 tokens will be ignored.
201
+ """
202
+ assert (ref_wav is None) ^ (ref_dict is None), f"Must provide exactly one of ref_wav or ref_dict (got {ref_wav} and {ref_dict})"
203
+
204
+ if ref_dict is None:
205
+ ref_dict = self.embed_ref(ref_wav, ref_sr)
206
+ else:
207
+ # type/device casting (all values will be numpy if it's from a prod API call)
208
+ for rk in list(ref_dict):
209
+ if isinstance(ref_dict[rk], np.ndarray):
210
+ ref_dict[rk] = torch.from_numpy(ref_dict[rk])
211
+ if torch.is_tensor(ref_dict[rk]):
212
+ ref_dict[rk] = ref_dict[rk].to(device=self.device, dtype=self.dtype)
213
+
214
+ speech_tokens = torch.atleast_2d(speech_tokens)
215
+
216
+ # backcompat
217
+ if speech_token_lens is None:
218
+ speech_token_lens = torch.LongTensor([st.size(-1) for st in speech_tokens]).to(self.device)
219
+
220
+ output_mels, _ = self.flow.inference(
221
+ token=speech_tokens,
222
+ token_len=speech_token_lens,
223
+ finalize=finalize,
224
+ noised_mels=noised_mels,
225
+ n_timesteps=n_cfm_timesteps,
226
+ meanflow=self.meanflow,
227
+ **ref_dict,
228
+ )
229
+ return output_mels
230
+
231
+
232
+ class S3Token2Wav(S3Token2Mel):
233
+ """
234
+ The decoder of S3Gen is a concat of token-to-mel (CFM) and a mel-to-waveform (HiFiGAN) modules.
235
+
236
+ TODO: make these modules configurable?
237
+ """
238
+
239
+ ignore_state_dict_missing = ("tokenizer._mel_filters", "tokenizer.window")
240
+
241
+ def __init__(self, meanflow=False):
242
+ super().__init__(meanflow)
243
+
244
+ f0_predictor = ConvRNNF0Predictor()
245
+ self.mel2wav = HiFTGenerator(
246
+ sampling_rate=S3GEN_SR,
247
+ upsample_rates=[8, 5, 3],
248
+ upsample_kernel_sizes=[16, 11, 7],
249
+ source_resblock_kernel_sizes=[7, 7, 11],
250
+ source_resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
251
+ f0_predictor=f0_predictor,
252
+ )
253
+
254
+ # silence out a few ms and fade audio in to reduce artifacts
255
+ n_trim = S3GEN_SR // 50 # 20ms = half of a frame
256
+ trim_fade = torch.zeros(2 * n_trim)
257
+ trim_fade[n_trim:] = (torch.cos(torch.linspace(torch.pi, 0, n_trim)) + 1) / 2
258
+ self.register_buffer("trim_fade", trim_fade, persistent=False) # (buffers get automatic device casting)
259
+ self.estimator_dtype = "fp32"
260
+
261
+ def forward(
262
+ self,
263
+ speech_tokens,
264
+ # locally-computed ref embedding (mutex with ref_dict)
265
+ ref_wav: Optional[torch.Tensor],
266
+ ref_sr: Optional[int],
267
+ # pre-computed ref embedding (prod API)
268
+ ref_dict: Optional[dict] = None,
269
+ finalize: bool = False,
270
+ speech_token_lens=None,
271
+ skip_vocoder=False,
272
+ n_cfm_timesteps=None,
273
+ noised_mels=None,
274
+
275
+ ):
276
+ """
277
+ Generate waveforms from S3 speech tokens and a reference waveform, which the speaker timbre is inferred from.
278
+ NOTE: used for sync synthesis only. Please use `S3GenStreamer` for streaming synthesis.
279
+ """
280
+ output_mels = super().forward(
281
+ speech_tokens, speech_token_lens=speech_token_lens, ref_wav=ref_wav,
282
+ ref_sr=ref_sr, ref_dict=ref_dict, finalize=finalize,
283
+ n_cfm_timesteps=n_cfm_timesteps, noised_mels=noised_mels,
284
+ )
285
+
286
+ if skip_vocoder:
287
+ return output_mels
288
+
289
+ # TODO jrm: ignoring the speed control (mel interpolation) and the HiFTGAN caching mechanisms for now.
290
+ hift_cache_source = torch.zeros(1, 1, 0).to(self.device)
291
+
292
+ output_wavs, *_ = self.mel2wav.inference(speech_feat=output_mels, cache_source=hift_cache_source)
293
+
294
+ if not self.training:
295
+ # NOTE: ad-hoc method to reduce "spillover" from the reference clip.
296
+ output_wavs[:, :len(self.trim_fade)] *= self.trim_fade
297
+
298
+ return output_wavs
299
+
300
+ @torch.inference_mode()
301
+ def flow_inference(
302
+ self,
303
+ speech_tokens,
304
+ # locally-computed ref embedding (mutex with ref_dict)
305
+ ref_wav: Optional[torch.Tensor] = None,
306
+ ref_sr: Optional[int] = None,
307
+ # pre-computed ref embedding (prod API)
308
+ ref_dict: Optional[dict] = None,
309
+ n_cfm_timesteps = None,
310
+ finalize: bool = False,
311
+ speech_token_lens=None,
312
+ ):
313
+ n_cfm_timesteps = n_cfm_timesteps or (2 if self.meanflow else 10)
314
+ noise = None
315
+ if self.meanflow:
316
+ noise = torch.randn(1, 80, speech_tokens.size(-1) * 2, dtype=self.dtype, device=self.device)
317
+ output_mels = super().forward(
318
+ speech_tokens, speech_token_lens=speech_token_lens, ref_wav=ref_wav, ref_sr=ref_sr, ref_dict=ref_dict,
319
+ n_cfm_timesteps=n_cfm_timesteps, finalize=finalize, noised_mels=noise,
320
+ )
321
+ return output_mels
322
+
323
+ @torch.inference_mode()
324
+ def hift_inference(self, speech_feat, cache_source: torch.Tensor = None):
325
+ if cache_source is None:
326
+ cache_source = torch.zeros(1, 1, 0).to(device=self.device, dtype=self.dtype)
327
+ return self.mel2wav.inference(speech_feat=speech_feat, cache_source=cache_source)
328
+
329
+ @torch.inference_mode()
330
+ def inference(
331
+ self,
332
+ speech_tokens,
333
+ # locally-computed ref embedding (mutex with ref_dict)
334
+ ref_wav: Optional[torch.Tensor] = None,
335
+ ref_sr: Optional[int] = None,
336
+ # pre-computed ref embedding (prod API)
337
+ ref_dict: Optional[dict] = None,
338
+ # left as a kwarg because this can change input/output size ratio
339
+ drop_invalid_tokens=True,
340
+ n_cfm_timesteps=None,
341
+ speech_token_lens=None,
342
+ ):
343
+ # hallucination prevention, drop special tokens
344
+ # if drop_invalid_tokens:
345
+ # speech_tokens, speech_token_lens = drop_invalid(speech_tokens, pad=S3_QUIET_PAD)
346
+
347
+ output_mels = self.flow_inference(
348
+ speech_tokens,
349
+ speech_token_lens=speech_token_lens,
350
+ ref_wav=ref_wav,
351
+ ref_sr=ref_sr,
352
+ ref_dict=ref_dict,
353
+ n_cfm_timesteps=n_cfm_timesteps,
354
+ finalize=True,
355
+ )
356
+ output_mels = output_mels.to(dtype=self.dtype) # FIXME (fp16 mode) is this still needed?
357
+ output_wavs, output_sources = self.hift_inference(output_mels, None)
358
+
359
+ # NOTE: ad-hoc method to reduce "spillover" from the reference clip.
360
+ output_wavs[:, :len(self.trim_fade)] *= self.trim_fade
361
+
362
+ return output_wavs, output_sources
chatterbox/models/s3gen/transformer/__init__.py ADDED
File without changes
chatterbox/models/s3gen/transformer/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (200 Bytes). View file
 
chatterbox/models/s3gen/transformer/__pycache__/activation.cpython-311.pyc ADDED
Binary file (3.59 kB). View file
 
chatterbox/models/s3gen/transformer/__pycache__/attention.cpython-311.pyc ADDED
Binary file (15.8 kB). View file
 
chatterbox/models/s3gen/transformer/__pycache__/convolution.cpython-311.pyc ADDED
Binary file (5.55 kB). View file
 
chatterbox/models/s3gen/transformer/__pycache__/embedding.cpython-311.pyc ADDED
Binary file (17.3 kB). View file
 
chatterbox/models/s3gen/transformer/__pycache__/encoder_layer.cpython-311.pyc ADDED
Binary file (11.2 kB). View file
 
chatterbox/models/s3gen/transformer/__pycache__/positionwise_feed_forward.cpython-311.pyc ADDED
Binary file (6.25 kB). View file
 
chatterbox/models/s3gen/transformer/__pycache__/subsampling.cpython-311.pyc ADDED
Binary file (18.9 kB). View file
 
chatterbox/models/s3gen/transformer/__pycache__/upsample_encoder.cpython-311.pyc ADDED
Binary file (15.6 kB). View file
 
chatterbox/models/s3gen/transformer/activation.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2020 Johns Hopkins University (Shinji Watanabe)
2
+ # 2020 Northwestern Polytechnical University (Pengcheng Guo)
3
+ # 2020 Mobvoi Inc (Binbin Zhang)
4
+ # 2024 Alibaba Inc (Xiang Lyu)
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """Swish() activation function for Conformer."""
18
+
19
+ import torch
20
+ from torch import nn, sin, pow
21
+ from torch.nn import Parameter
22
+
23
+
24
+ class Swish(torch.nn.Module):
25
+ """Construct an Swish object."""
26
+
27
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
28
+ """Return Swish activation function."""
29
+ return x * torch.sigmoid(x)
30
+
31
+
32
+ # Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
33
+ # LICENSE is in incl_licenses directory.
34
+ class Snake(nn.Module):
35
+ '''
36
+ Implementation of a sine-based periodic activation function
37
+ Shape:
38
+ - Input: (B, C, T)
39
+ - Output: (B, C, T), same shape as the input
40
+ Parameters:
41
+ - alpha - trainable parameter
42
+ References:
43
+ - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
44
+ https://arxiv.org/abs/2006.08195
45
+ Examples:
46
+ >>> a1 = snake(256)
47
+ >>> x = torch.randn(256)
48
+ >>> x = a1(x)
49
+ '''
50
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
51
+ '''
52
+ Initialization.
53
+ INPUT:
54
+ - in_features: shape of the input
55
+ - alpha: trainable parameter
56
+ alpha is initialized to 1 by default, higher values = higher-frequency.
57
+ alpha will be trained along with the rest of your model.
58
+ '''
59
+ super(Snake, self).__init__()
60
+ self.in_features = in_features
61
+
62
+ # initialize alpha
63
+ self.alpha_logscale = alpha_logscale
64
+ if self.alpha_logscale: # log scale alphas initialized to zeros
65
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
66
+ else: # linear scale alphas initialized to ones
67
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
68
+
69
+ self.alpha.requires_grad = alpha_trainable
70
+
71
+ self.no_div_by_zero = 0.000000001
72
+
73
+ def forward(self, x):
74
+ '''
75
+ Forward pass of the function.
76
+ Applies the function to the input elementwise.
77
+ Snake ∶= x + 1/a * sin^2 (xa)
78
+ '''
79
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
80
+ if self.alpha_logscale:
81
+ alpha = torch.exp(alpha)
82
+ x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
83
+
84
+ return x
chatterbox/models/s3gen/transformer/attention.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2019 Shigeki Karita
2
+ # 2020 Mobvoi Inc (Binbin Zhang)
3
+ # 2022 Xingchen Song ([email protected])
4
+ # 2024 Alibaba Inc (Xiang Lyu)
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """Multi-Head Attention layer definition."""
18
+
19
+ import math
20
+ from typing import Tuple
21
+
22
+ import torch
23
+ from torch import nn
24
+
25
+
26
+ class MultiHeadedAttention(nn.Module):
27
+ """Multi-Head Attention layer.
28
+
29
+ Args:
30
+ n_head (int): The number of heads.
31
+ n_feat (int): The number of features.
32
+ dropout_rate (float): Dropout rate.
33
+
34
+ """
35
+
36
+ def __init__(self,
37
+ n_head: int,
38
+ n_feat: int,
39
+ dropout_rate: float,
40
+ key_bias: bool = True):
41
+ """Construct an MultiHeadedAttention object."""
42
+ super().__init__()
43
+ assert n_feat % n_head == 0
44
+ # We assume d_v always equals d_k
45
+ self.d_k = n_feat // n_head
46
+ self.h = n_head
47
+ self.linear_q = nn.Linear(n_feat, n_feat)
48
+ self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
49
+ self.linear_v = nn.Linear(n_feat, n_feat)
50
+ self.linear_out = nn.Linear(n_feat, n_feat)
51
+ self.dropout = nn.Dropout(p=dropout_rate)
52
+
53
+ def forward_qkv(
54
+ self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
55
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
56
+ """Transform query, key and value.
57
+
58
+ Args:
59
+ query (torch.Tensor): Query tensor (#batch, time1, size).
60
+ key (torch.Tensor): Key tensor (#batch, time2, size).
61
+ value (torch.Tensor): Value tensor (#batch, time2, size).
62
+
63
+ Returns:
64
+ torch.Tensor: Transformed query tensor, size
65
+ (#batch, n_head, time1, d_k).
66
+ torch.Tensor: Transformed key tensor, size
67
+ (#batch, n_head, time2, d_k).
68
+ torch.Tensor: Transformed value tensor, size
69
+ (#batch, n_head, time2, d_k).
70
+
71
+ """
72
+ n_batch = query.size(0)
73
+ q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
74
+ k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
75
+ v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
76
+ q = q.transpose(1, 2) # (batch, head, time1, d_k)
77
+ k = k.transpose(1, 2) # (batch, head, time2, d_k)
78
+ v = v.transpose(1, 2) # (batch, head, time2, d_k)
79
+
80
+ return q, k, v
81
+
82
+ def forward_attention(
83
+ self,
84
+ value: torch.Tensor,
85
+ scores: torch.Tensor,
86
+ mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
87
+ ) -> torch.Tensor:
88
+ """Compute attention context vector.
89
+
90
+ Args:
91
+ value (torch.Tensor): Transformed value, size
92
+ (#batch, n_head, time2, d_k).
93
+ scores (torch.Tensor): Attention score, size
94
+ (#batch, n_head, time1, time2).
95
+ mask (torch.Tensor): Mask, size (#batch, 1, time2) or
96
+ (#batch, time1, time2), (0, 0, 0) means fake mask.
97
+
98
+ Returns:
99
+ torch.Tensor: Transformed value (#batch, time1, d_model)
100
+ weighted by the attention score (#batch, time1, time2).
101
+
102
+ """
103
+ n_batch = value.size(0)
104
+ # NOTE(xcsong): When will `if mask.size(2) > 0` be True?
105
+ # 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
106
+ # 1st chunk to ease the onnx export.]
107
+ # 2. pytorch training
108
+ if mask.size(2) > 0: # time2 > 0
109
+ mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
110
+ # For last chunk, time2 might be larger than scores.size(-1)
111
+ mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
112
+ scores = scores.masked_fill(mask, -float('inf'))
113
+ attn = torch.softmax(scores, dim=-1).masked_fill(
114
+ mask, 0.0) # (batch, head, time1, time2)
115
+ # NOTE(xcsong): When will `if mask.size(2) > 0` be False?
116
+ # 1. onnx(16/-1, -1/-1, 16/0)
117
+ # 2. jit (16/-1, -1/-1, 16/0, 16/4)
118
+ else:
119
+ attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
120
+
121
+ p_attn = self.dropout(attn)
122
+ x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
123
+ x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
124
+ self.h * self.d_k)
125
+ ) # (batch, time1, d_model)
126
+
127
+ return self.linear_out(x) # (batch, time1, d_model)
128
+
129
+ def forward(
130
+ self,
131
+ query: torch.Tensor,
132
+ key: torch.Tensor,
133
+ value: torch.Tensor,
134
+ mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
135
+ pos_emb: torch.Tensor = torch.empty(0),
136
+ cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
137
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
138
+ """Compute scaled dot product attention.
139
+
140
+ Args:
141
+ query (torch.Tensor): Query tensor (#batch, time1, size).
142
+ key (torch.Tensor): Key tensor (#batch, time2, size).
143
+ value (torch.Tensor): Value tensor (#batch, time2, size).
144
+ mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
145
+ (#batch, time1, time2).
146
+ 1.When applying cross attention between decoder and encoder,
147
+ the batch padding mask for input is in (#batch, 1, T) shape.
148
+ 2.When applying self attention of encoder,
149
+ the mask is in (#batch, T, T) shape.
150
+ 3.When applying self attention of decoder,
151
+ the mask is in (#batch, L, L) shape.
152
+ 4.If the different position in decoder see different block
153
+ of the encoder, such as Mocha, the passed in mask could be
154
+ in (#batch, L, T) shape. But there is no such case in current
155
+ CosyVoice.
156
+ cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
157
+ where `cache_t == chunk_size * num_decoding_left_chunks`
158
+ and `head * d_k == size`
159
+
160
+
161
+ Returns:
162
+ torch.Tensor: Output tensor (#batch, time1, d_model).
163
+ torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
164
+ where `cache_t == chunk_size * num_decoding_left_chunks`
165
+ and `head * d_k == size`
166
+
167
+ """
168
+ q, k, v = self.forward_qkv(query, key, value)
169
+
170
+ # NOTE(xcsong):
171
+ # when export onnx model, for 1st chunk, we feed
172
+ # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
173
+ # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
174
+ # In all modes, `if cache.size(0) > 0` will alwayse be `True`
175
+ # and we will always do splitting and
176
+ # concatnation(this will simplify onnx export). Note that
177
+ # it's OK to concat & split zero-shaped tensors(see code below).
178
+ # when export jit model, for 1st chunk, we always feed
179
+ # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
180
+ # >>> a = torch.ones((1, 2, 0, 4))
181
+ # >>> b = torch.ones((1, 2, 3, 4))
182
+ # >>> c = torch.cat((a, b), dim=2)
183
+ # >>> torch.equal(b, c) # True
184
+ # >>> d = torch.split(a, 2, dim=-1)
185
+ # >>> torch.equal(d[0], d[1]) # True
186
+ if cache.size(0) > 0:
187
+ key_cache, value_cache = torch.split(cache,
188
+ cache.size(-1) // 2,
189
+ dim=-1)
190
+ k = torch.cat([key_cache, k], dim=2)
191
+ v = torch.cat([value_cache, v], dim=2)
192
+ # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
193
+ # non-trivial to calculate `next_cache_start` here.
194
+ new_cache = torch.cat((k, v), dim=-1)
195
+
196
+ scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
197
+ return self.forward_attention(v, scores, mask), new_cache
198
+
199
+
200
+ class RelPositionMultiHeadedAttention(MultiHeadedAttention):
201
+ """Multi-Head Attention layer with relative position encoding.
202
+ Paper: https://arxiv.org/abs/1901.02860
203
+ Args:
204
+ n_head (int): The number of heads.
205
+ n_feat (int): The number of features.
206
+ dropout_rate (float): Dropout rate.
207
+ """
208
+
209
+ def __init__(self,
210
+ n_head: int,
211
+ n_feat: int,
212
+ dropout_rate: float,
213
+ key_bias: bool = True):
214
+ """Construct an RelPositionMultiHeadedAttention object."""
215
+ super().__init__(n_head, n_feat, dropout_rate, key_bias)
216
+ # linear transformation for positional encoding
217
+ self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
218
+ # these two learnable bias are used in matrix c and matrix d
219
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
220
+ self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
221
+ self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
222
+ torch.nn.init.xavier_uniform_(self.pos_bias_u)
223
+ torch.nn.init.xavier_uniform_(self.pos_bias_v)
224
+
225
+ def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
226
+ """Compute relative positional encoding.
227
+
228
+ Args:
229
+ x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
230
+ time1 means the length of query vector.
231
+
232
+ Returns:
233
+ torch.Tensor: Output tensor.
234
+
235
+ """
236
+ zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
237
+ device=x.device,
238
+ dtype=x.dtype)
239
+ x_padded = torch.cat([zero_pad, x], dim=-1)
240
+
241
+ x_padded = x_padded.view(x.size()[0],
242
+ x.size()[1],
243
+ x.size(3) + 1, x.size(2))
244
+ x = x_padded[:, :, 1:].view_as(x)[
245
+ :, :, :, : x.size(-1) // 2 + 1
246
+ ] # only keep the positions from 0 to time2
247
+ return x
248
+
249
+ def forward(
250
+ self,
251
+ query: torch.Tensor,
252
+ key: torch.Tensor,
253
+ value: torch.Tensor,
254
+ mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
255
+ pos_emb: torch.Tensor = torch.empty(0),
256
+ cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
257
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
258
+ """Compute 'Scaled Dot Product Attention' with rel. positional encoding.
259
+ Args:
260
+ query (torch.Tensor): Query tensor (#batch, time1, size).
261
+ key (torch.Tensor): Key tensor (#batch, time2, size).
262
+ value (torch.Tensor): Value tensor (#batch, time2, size).
263
+ mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
264
+ (#batch, time1, time2), (0, 0, 0) means fake mask.
265
+ pos_emb (torch.Tensor): Positional embedding tensor
266
+ (#batch, time2, size).
267
+ cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
268
+ where `cache_t == chunk_size * num_decoding_left_chunks`
269
+ and `head * d_k == size`
270
+ Returns:
271
+ torch.Tensor: Output tensor (#batch, time1, d_model).
272
+ torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
273
+ where `cache_t == chunk_size * num_decoding_left_chunks`
274
+ and `head * d_k == size`
275
+ """
276
+ q, k, v = self.forward_qkv(query, key, value)
277
+ q = q.transpose(1, 2) # (batch, time1, head, d_k)
278
+
279
+ # NOTE(xcsong):
280
+ # when export onnx model, for 1st chunk, we feed
281
+ # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
282
+ # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
283
+ # In all modes, `if cache.size(0) > 0` will alwayse be `True`
284
+ # and we will always do splitting and
285
+ # concatnation(this will simplify onnx export). Note that
286
+ # it's OK to concat & split zero-shaped tensors(see code below).
287
+ # when export jit model, for 1st chunk, we always feed
288
+ # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
289
+ # >>> a = torch.ones((1, 2, 0, 4))
290
+ # >>> b = torch.ones((1, 2, 3, 4))
291
+ # >>> c = torch.cat((a, b), dim=2)
292
+ # >>> torch.equal(b, c) # True
293
+ # >>> d = torch.split(a, 2, dim=-1)
294
+ # >>> torch.equal(d[0], d[1]) # True
295
+ if cache.size(0) > 0:
296
+ key_cache, value_cache = torch.split(cache,
297
+ cache.size(-1) // 2,
298
+ dim=-1)
299
+ k = torch.cat([key_cache, k], dim=2)
300
+ v = torch.cat([value_cache, v], dim=2)
301
+ # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
302
+ # non-trivial to calculate `next_cache_start` here.
303
+ new_cache = torch.cat((k, v), dim=-1)
304
+
305
+ n_batch_pos = pos_emb.size(0)
306
+ p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
307
+ p = p.transpose(1, 2) # (batch, head, time1, d_k)
308
+
309
+ # (batch, head, time1, d_k)
310
+ q_with_bias_u = (q + self.pos_bias_u.to(q.device)).transpose(1, 2)
311
+ # (batch, head, time1, d_k)
312
+ q_with_bias_v = (q + self.pos_bias_v.to(q.device)).transpose(1, 2)
313
+
314
+ # compute attention score
315
+ # first compute matrix a and matrix c
316
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
317
+ # (batch, head, time1, time2)
318
+ matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
319
+
320
+ # compute matrix b and matrix d
321
+ # (batch, head, time1, time2)
322
+ matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
323
+ # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
324
+ if matrix_ac.shape != matrix_bd.shape:
325
+ matrix_bd = self.rel_shift(matrix_bd)
326
+
327
+ scores = (matrix_ac + matrix_bd) / math.sqrt(
328
+ self.d_k) # (batch, head, time1, time2)
329
+
330
+ return self.forward_attention(v, scores, mask), new_cache
chatterbox/models/s3gen/transformer/convolution.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
2
+ # 2024 Alibaba Inc (Xiang Lyu)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # Modified from ESPnet(https://github.com/espnet/espnet)
16
+ """ConvolutionModule definition."""
17
+
18
+ from typing import Tuple
19
+
20
+ import torch
21
+ from torch import nn
22
+
23
+
24
+ class ConvolutionModule(nn.Module):
25
+ """ConvolutionModule in Conformer model."""
26
+
27
+ def __init__(self,
28
+ channels: int,
29
+ kernel_size: int = 15,
30
+ activation: nn.Module = nn.ReLU(),
31
+ norm: str = "batch_norm",
32
+ causal: bool = False,
33
+ bias: bool = True):
34
+ """Construct an ConvolutionModule object.
35
+ Args:
36
+ channels (int): The number of channels of conv layers.
37
+ kernel_size (int): Kernel size of conv layers.
38
+ causal (int): Whether use causal convolution or not
39
+ """
40
+ super().__init__()
41
+
42
+ self.pointwise_conv1 = nn.Conv1d(
43
+ channels,
44
+ 2 * channels,
45
+ kernel_size=1,
46
+ stride=1,
47
+ padding=0,
48
+ bias=bias,
49
+ )
50
+ # self.lorder is used to distinguish if it's a causal convolution,
51
+ # if self.lorder > 0: it's a causal convolution, the input will be
52
+ # padded with self.lorder frames on the left in forward.
53
+ # else: it's a symmetrical convolution
54
+ if causal:
55
+ padding = 0
56
+ self.lorder = kernel_size - 1
57
+ else:
58
+ # kernel_size should be an odd number for none causal convolution
59
+ assert (kernel_size - 1) % 2 == 0
60
+ padding = (kernel_size - 1) // 2
61
+ self.lorder = 0
62
+ self.depthwise_conv = nn.Conv1d(
63
+ channels,
64
+ channels,
65
+ kernel_size,
66
+ stride=1,
67
+ padding=padding,
68
+ groups=channels,
69
+ bias=bias,
70
+ )
71
+
72
+ assert norm in ['batch_norm', 'layer_norm']
73
+ if norm == "batch_norm":
74
+ self.use_layer_norm = False
75
+ self.norm = nn.BatchNorm1d(channels)
76
+ else:
77
+ self.use_layer_norm = True
78
+ self.norm = nn.LayerNorm(channels)
79
+
80
+ self.pointwise_conv2 = nn.Conv1d(
81
+ channels,
82
+ channels,
83
+ kernel_size=1,
84
+ stride=1,
85
+ padding=0,
86
+ bias=bias,
87
+ )
88
+ self.activation = activation
89
+
90
+ def forward(
91
+ self,
92
+ x: torch.Tensor,
93
+ mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
94
+ cache: torch.Tensor = torch.zeros((0, 0, 0)),
95
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
96
+ """Compute convolution module.
97
+ Args:
98
+ x (torch.Tensor): Input tensor (#batch, time, channels).
99
+ mask_pad (torch.Tensor): used for batch padding (#batch, 1, time),
100
+ (0, 0, 0) means fake mask.
101
+ cache (torch.Tensor): left context cache, it is only
102
+ used in causal convolution (#batch, channels, cache_t),
103
+ (0, 0, 0) meas fake cache.
104
+ Returns:
105
+ torch.Tensor: Output tensor (#batch, time, channels).
106
+ """
107
+ # exchange the temporal dimension and the feature dimension
108
+ x = x.transpose(1, 2) # (#batch, channels, time)
109
+
110
+ # mask batch padding
111
+ if mask_pad.size(2) > 0: # time > 0
112
+ x.masked_fill_(~mask_pad, 0.0)
113
+
114
+ if self.lorder > 0:
115
+ if cache.size(2) == 0: # cache_t == 0
116
+ x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0)
117
+ else:
118
+ assert cache.size(0) == x.size(0) # equal batch
119
+ assert cache.size(1) == x.size(1) # equal channel
120
+ x = torch.cat((cache, x), dim=2)
121
+ assert (x.size(2) > self.lorder)
122
+ new_cache = x[:, :, -self.lorder:]
123
+ else:
124
+ # It's better we just return None if no cache is required,
125
+ # However, for JIT export, here we just fake one tensor instead of
126
+ # None.
127
+ new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
128
+
129
+ # GLU mechanism
130
+ x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
131
+ x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
132
+
133
+ # 1D Depthwise Conv
134
+ x = self.depthwise_conv(x)
135
+ if self.use_layer_norm:
136
+ x = x.transpose(1, 2)
137
+ x = self.activation(self.norm(x))
138
+ if self.use_layer_norm:
139
+ x = x.transpose(1, 2)
140
+ x = self.pointwise_conv2(x)
141
+ # mask batch padding
142
+ if mask_pad.size(2) > 0: # time > 0
143
+ x.masked_fill_(~mask_pad, 0.0)
144
+
145
+ return x.transpose(1, 2), new_cache
chatterbox/models/s3gen/transformer/embedding.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
2
+ # 2024 Alibaba Inc (Xiang Lyu)
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # Modified from ESPnet(https://github.com/espnet/espnet)
16
+ """Positonal Encoding Module."""
17
+
18
+ import math
19
+ from typing import Tuple, Union
20
+
21
+ import torch
22
+ import torch.nn.functional as F
23
+ import numpy as np
24
+
25
+
26
+ class PositionalEncoding(torch.nn.Module):
27
+ """Positional encoding.
28
+
29
+ :param int d_model: embedding dim
30
+ :param float dropout_rate: dropout rate
31
+ :param int max_len: maximum input length
32
+
33
+ PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
34
+ PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
35
+ """
36
+
37
+ def __init__(self,
38
+ d_model: int,
39
+ dropout_rate: float,
40
+ max_len: int = 5000,
41
+ reverse: bool = False):
42
+ """Construct an PositionalEncoding object."""
43
+ super().__init__()
44
+ self.d_model = d_model
45
+ self.xscale = math.sqrt(self.d_model)
46
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
47
+ self.max_len = max_len
48
+
49
+ self.pe = torch.zeros(self.max_len, self.d_model)
50
+ position = torch.arange(0, self.max_len,
51
+ dtype=torch.float32).unsqueeze(1)
52
+ div_term = torch.exp(
53
+ torch.arange(0, self.d_model, 2, dtype=torch.float32) *
54
+ -(math.log(10000.0) / self.d_model))
55
+ self.pe[:, 0::2] = torch.sin(position * div_term)
56
+ self.pe[:, 1::2] = torch.cos(position * div_term)
57
+ self.pe = self.pe.unsqueeze(0)
58
+
59
+ def forward(self,
60
+ x: torch.Tensor,
61
+ offset: Union[int, torch.Tensor] = 0) \
62
+ -> Tuple[torch.Tensor, torch.Tensor]:
63
+ """Add positional encoding.
64
+
65
+ Args:
66
+ x (torch.Tensor): Input. Its shape is (batch, time, ...)
67
+ offset (int, torch.tensor): position offset
68
+
69
+ Returns:
70
+ torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
71
+ torch.Tensor: for compatibility to RelPositionalEncoding
72
+ """
73
+
74
+ self.pe = self.pe.to(x.device)
75
+ pos_emb = self.position_encoding(offset, x.size(1), False)
76
+ x = x * self.xscale + pos_emb
77
+ return self.dropout(x), self.dropout(pos_emb)
78
+
79
+ def position_encoding(self,
80
+ offset: Union[int, torch.Tensor],
81
+ size: int,
82
+ apply_dropout: bool = True) -> torch.Tensor:
83
+ """ For getting encoding in a streaming fashion
84
+
85
+ Attention!!!!!
86
+ we apply dropout only once at the whole utterance level in a none
87
+ streaming way, but will call this function several times with
88
+ increasing input size in a streaming scenario, so the dropout will
89
+ be applied several times.
90
+
91
+ Args:
92
+ offset (int or torch.tensor): start offset
93
+ size (int): required size of position encoding
94
+
95
+ Returns:
96
+ torch.Tensor: Corresponding encoding
97
+ """
98
+ # How to subscript a Union type:
99
+ # https://github.com/pytorch/pytorch/issues/69434
100
+ if isinstance(offset, int):
101
+ assert offset + size <= self.max_len
102
+ pos_emb = self.pe[:, offset:offset + size]
103
+ elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar
104
+ assert offset + size <= self.max_len
105
+ pos_emb = self.pe[:, offset:offset + size]
106
+ else: # for batched streaming decoding on GPU
107
+ assert torch.max(offset) + size <= self.max_len
108
+ index = offset.unsqueeze(1) + \
109
+ torch.arange(0, size).to(offset.device) # B X T
110
+ flag = index > 0
111
+ # remove negative offset
112
+ index = index * flag
113
+ pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model
114
+
115
+ if apply_dropout:
116
+ pos_emb = self.dropout(pos_emb)
117
+ return pos_emb
118
+
119
+
120
+ class RelPositionalEncoding(PositionalEncoding):
121
+ """Relative positional encoding module.
122
+ See : Appendix B in https://arxiv.org/abs/1901.02860
123
+ Args:
124
+ d_model (int): Embedding dimension.
125
+ dropout_rate (float): Dropout rate.
126
+ max_len (int): Maximum input length.
127
+ """
128
+
129
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
130
+ """Initialize class."""
131
+ super().__init__(d_model, dropout_rate, max_len, reverse=True)
132
+
133
+ def forward(self,
134
+ x: torch.Tensor,
135
+ offset: Union[int, torch.Tensor] = 0) \
136
+ -> Tuple[torch.Tensor, torch.Tensor]:
137
+ """Compute positional encoding.
138
+ Args:
139
+ x (torch.Tensor): Input tensor (batch, time, `*`).
140
+ Returns:
141
+ torch.Tensor: Encoded tensor (batch, time, `*`).
142
+ torch.Tensor: Positional embedding tensor (1, time, `*`).
143
+ """
144
+ self.pe = self.pe.to(x.device)
145
+ x = x * self.xscale
146
+ pos_emb = self.position_encoding(offset, x.size(1), False)
147
+ return self.dropout(x), self.dropout(pos_emb)
148
+
149
+
150
+ class WhisperPositionalEncoding(PositionalEncoding):
151
+ """ Sinusoids position encoding used in openai-whisper.encoder
152
+ """
153
+
154
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500):
155
+ super().__init__(d_model, dropout_rate, max_len)
156
+ self.xscale = 1.0
157
+ log_timescale_increment = np.log(10000) / (d_model // 2 - 1)
158
+ inv_timescales = torch.exp(-log_timescale_increment *
159
+ torch.arange(d_model // 2))
160
+ scaled_time = torch.arange(max_len)[:, np.newaxis] * \
161
+ inv_timescales[np.newaxis, :]
162
+ pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
163
+ delattr(self, "pe")
164
+ self.register_buffer("pe", pe.unsqueeze(0))
165
+
166
+
167
+ class LearnablePositionalEncoding(PositionalEncoding):
168
+ """ Learnable position encoding used in openai-whisper.decoder
169
+ """
170
+
171
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448):
172
+ super().__init__(d_model, dropout_rate, max_len)
173
+ # NOTE(xcsong): overwrite self.pe & self.xscale
174
+ self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model))
175
+ self.xscale = 1.0
176
+
177
+
178
+ class NoPositionalEncoding(torch.nn.Module):
179
+ """ No position encoding
180
+ """
181
+
182
+ def __init__(self, d_model: int, dropout_rate: float):
183
+ super().__init__()
184
+ self.d_model = d_model
185
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
186
+
187
+ def forward(self,
188
+ x: torch.Tensor,
189
+ offset: Union[int, torch.Tensor] = 0) \
190
+ -> Tuple[torch.Tensor, torch.Tensor]:
191
+ """ Just return zero vector for interface compatibility
192
+ """
193
+ pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device)
194
+ return self.dropout(x), pos_emb
195
+
196
+ def position_encoding(self, offset: Union[int, torch.Tensor],
197
+ size: int) -> torch.Tensor:
198
+ return torch.zeros(1, size, self.d_model)
199
+
200
+
201
+ class EspnetRelPositionalEncoding(torch.nn.Module):
202
+ """Relative positional encoding module (new implementation).
203
+
204
+ Details can be found in https://github.com/espnet/espnet/pull/2816.
205
+
206
+ See : Appendix B in https://arxiv.org/abs/1901.02860
207
+
208
+ Args:
209
+ d_model (int): Embedding dimension.
210
+ dropout_rate (float): Dropout rate.
211
+ max_len (int): Maximum input length.
212
+
213
+ """
214
+
215
+ def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000):
216
+ """Construct an PositionalEncoding object."""
217
+ super(EspnetRelPositionalEncoding, self).__init__()
218
+ self.d_model = d_model
219
+ self.xscale = math.sqrt(self.d_model)
220
+ self.dropout = torch.nn.Dropout(p=dropout_rate)
221
+ self.pe = None
222
+ self.extend_pe(torch.tensor(0.0).expand(1, max_len))
223
+
224
+ def extend_pe(self, x: torch.Tensor):
225
+ """Reset the positional encodings."""
226
+ if self.pe is not None:
227
+ # self.pe contains both positive and negative parts
228
+ # the length of self.pe is 2 * input_len - 1
229
+ if self.pe.size(1) >= x.size(1) * 2 - 1:
230
+ if self.pe.dtype != x.dtype or self.pe.device != x.device:
231
+ self.pe = self.pe.to(dtype=x.dtype, device=x.device)
232
+ return
233
+ # Suppose `i` means to the position of query vecotr and `j` means the
234
+ # position of key vector. We use position relative positions when keys
235
+ # are to the left (i>j) and negative relative positions otherwise (i<j).
236
+ pe_positive = torch.zeros(x.size(1), self.d_model)
237
+ pe_negative = torch.zeros(x.size(1), self.d_model)
238
+ position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
239
+ div_term = torch.exp(
240
+ torch.arange(0, self.d_model, 2, dtype=torch.float32)
241
+ * -(math.log(10000.0) / self.d_model)
242
+ )
243
+ pe_positive[:, 0::2] = torch.sin(position * div_term)
244
+ pe_positive[:, 1::2] = torch.cos(position * div_term)
245
+ pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
246
+ pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
247
+
248
+ # Reserve the order of positive indices and concat both positive and
249
+ # negative indices. This is used to support the shifting trick
250
+ # as in https://arxiv.org/abs/1901.02860
251
+ pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
252
+ pe_negative = pe_negative[1:].unsqueeze(0)
253
+ pe = torch.cat([pe_positive, pe_negative], dim=1)
254
+ self.pe = pe.to(device=x.device, dtype=x.dtype)
255
+
256
+ def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \
257
+ -> Tuple[torch.Tensor, torch.Tensor]:
258
+ """Add positional encoding.
259
+
260
+ Args:
261
+ x (torch.Tensor): Input tensor (batch, time, `*`).
262
+
263
+ Returns:
264
+ torch.Tensor: Encoded tensor (batch, time, `*`).
265
+
266
+ """
267
+ self.extend_pe(x)
268
+ x = x * self.xscale
269
+ pos_emb = self.position_encoding(size=x.size(1), offset=offset)
270
+ return self.dropout(x), self.dropout(pos_emb)
271
+
272
+ def position_encoding(self,
273
+ offset: Union[int, torch.Tensor],
274
+ size: int) -> torch.Tensor:
275
+ """ For getting encoding in a streaming fashion
276
+
277
+ Attention!!!!!
278
+ we apply dropout only once at the whole utterance level in a none
279
+ streaming way, but will call this function several times with
280
+ increasing input size in a streaming scenario, so the dropout will
281
+ be applied several times.
282
+
283
+ Args:
284
+ offset (int or torch.tensor): start offset
285
+ size (int): required size of position encoding
286
+
287
+ Returns:
288
+ torch.Tensor: Corresponding encoding
289
+ """
290
+ pos_emb = self.pe[
291
+ :,
292
+ self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size,
293
+ ]
294
+ return pos_emb