MiniLM-L12-H384 trained on GooAQ
This is a Cross Encoder model finetuned from microsoft/MiniLM-L12-H384-uncased using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: microsoft/MiniLM-L12-H384-uncased
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
- Language: en
- License: apache-2.0
Model Sources
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
model = CrossEncoder("zhensuuu/reranker-MiniLM-L12-H384-uncased-intent")
pairs = [
['Add edge representing resource request', ' Model process-resource dependency relationship'],
['Split text into words list', ' Filter words matching given keyword.'],
['Calculate approximate cube root value', ' Find cube root using exponentiation'],
['Reverse sublist within linked list', ' Move nodes to new positions'],
['Defines neighbors for node A', ' Specifies direct connections from A'],
]
scores = model.predict(pairs)
print(scores.shape)
ranks = model.rank(
'Add edge representing resource request',
[
' Model process-resource dependency relationship',
' Filter words matching given keyword.',
' Find cube root using exponentiation',
' Move nodes to new positions',
' Specifies direct connections from A',
]
)
Evaluation
Metrics
Cross Encoder Reranking
| Metric |
NanoMSMARCO_R100 |
NanoNFCorpus_R100 |
NanoNQ_R100 |
| map |
0.0735 (-0.4161) |
0.3017 (+0.0407) |
0.0837 (-0.3359) |
| mrr@10 |
0.0476 (-0.4299) |
0.4457 (-0.0541) |
0.0661 (-0.3606) |
| ndcg@10 |
0.0687 (-0.4718) |
0.2916 (-0.0335) |
0.0748 (-0.4258) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean
- Evaluated with
CrossEncoderNanoBEIREvaluator with these parameters:{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"rerank_k": 100,
"at_k": 10,
"always_rerank_positives": true
}
| Metric |
Value |
| map |
0.1529 (-0.2371) |
| mrr@10 |
0.1864 (-0.2816) |
| ndcg@10 |
0.1450 (-0.3104) |
Training Details
Training Dataset
Unnamed Dataset
- Size: 85,938 training samples
- Columns:
question and answer
- Approximate statistics based on the first 1000 samples:
|
question |
answer |
| type |
string |
string |
| details |
- min: 18 characters
- mean: 33.49 characters
- max: 49 characters
|
- min: 18 characters
- mean: 35.88 characters
- max: 52 characters
|
- Samples:
| question |
answer |
Check if configuration loaded successfully |
prevent further actions if configuration absent |
Add new user to list |
Store received user in memory |
Selects profitable jobs and schedules |
Displays scheduled jobs and profit |
- Loss:
CachedMultipleNegativesRankingLoss with these parameters:{
"scale": 10.0,
"num_negatives": 5,
"activation_fn": "torch.nn.modules.activation.Sigmoid",
"mini_batch_size": 16
}
Evaluation Dataset
Unnamed Dataset
- Size: 1,000 evaluation samples
- Columns:
question and answer
- Approximate statistics based on the first 1000 samples:
|
question |
answer |
| type |
string |
string |
| details |
- min: 20 characters
- mean: 33.63 characters
- max: 54 characters
|
- min: 18 characters
- mean: 35.86 characters
- max: 55 characters
|
- Samples:
| question |
answer |
Add edge representing resource request |
Model process-resource dependency relationship |
Split text into words list |
Filter words matching given keyword. |
Calculate approximate cube root value |
Find cube root using exponentiation |
- Loss:
CachedMultipleNegativesRankingLoss with these parameters:{
"scale": 10.0,
"num_negatives": 5,
"activation_fn": "torch.nn.modules.activation.Sigmoid",
"mini_batch_size": 16
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
learning_rate: 2e-05
num_train_epochs: 1
warmup_ratio: 0.1
seed: 12
bf16: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 12
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
NanoMSMARCO_R100_ndcg@10 |
NanoNFCorpus_R100_ndcg@10 |
NanoNQ_R100_ndcg@10 |
NanoBEIR_R100_mean_ndcg@10 |
| -1 |
-1 |
- |
- |
0.0146 (-0.5258) |
0.2622 (-0.0628) |
0.0058 (-0.4949) |
0.0942 (-0.3612) |
| 0.0030 |
1 |
1.7927 |
- |
- |
- |
- |
- |
| 0.2976 |
100 |
1.2688 |
- |
- |
- |
- |
- |
| 0.5952 |
200 |
0.8847 |
- |
- |
- |
- |
- |
| 0.7440 |
250 |
- |
0.8479 |
0.0586 (-0.4818) |
0.2978 (-0.0272) |
0.0717 (-0.4290) |
0.1427 (-0.3127) |
| 0.8929 |
300 |
0.8519 |
- |
- |
- |
- |
- |
| -1 |
-1 |
- |
- |
0.0687 (-0.4718) |
0.2916 (-0.0335) |
0.0748 (-0.4258) |
0.1450 (-0.3104) |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.082 kWh
- Carbon Emitted: 0.000 kg of CO2
- Hours Used: 0.306 hours
Training Hardware
- On Cloud: No
- GPU Model: 4 x NVIDIA RTX 6000 Ada Generation
- CPU Model: AMD EPYC 7763 64-Core Processor
- RAM Size: 251.53 GB
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 5.1.0
- Transformers: 4.48.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}