Spaces:
Runtime error
Runtime error
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import gradio as gr | |
| model_name = "RUC-DataLab/DeepAnalyze-8B" | |
| # 先尝试 fast tokenizer,失败就退回到 slow tokenizer(use_fast=False) | |
| from transformers import AutoTokenizer | |
| try: | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True) | |
| except Exception as e: | |
| print("Fast tokenizer failed:", e) | |
| print("Falling back to slow tokenizer (use_fast=False).") | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) | |
| model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) | |
| def chat_fn(message, history): | |
| inputs = tokenizer.apply_chat_template( | |
| history + [{"role": "user", "content": message}], | |
| add_generation_prompt=True, | |
| return_tensors="pt" | |
| ).to(model.device) | |
| output = model.generate(inputs, max_new_tokens=512) | |
| response = tokenizer.decode(output[0], skip_special_tokens=True) | |
| history = history + [ | |
| {"role":"user","content":message}, | |
| {"role":"assistant","content":response} | |
| ] | |
| return response, history | |
| gr.ChatInterface(chat_fn).launch() | |