Spaces:
Runtime error
Runtime error
File size: 1,250 Bytes
1459517 b71ebe4 1459517 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
model_name = "RUC-DataLab/DeepAnalyze-8B"
# 先尝试 fast tokenizer,失败就退回到 slow tokenizer(use_fast=False)
from transformers import AutoTokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True)
except Exception as e:
print("Fast tokenizer failed:", e)
print("Falling back to slow tokenizer (use_fast=False).")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
def chat_fn(message, history):
inputs = tokenizer.apply_chat_template(
history + [{"role": "user", "content": message}],
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
output = model.generate(inputs, max_new_tokens=512)
response = tokenizer.decode(output[0], skip_special_tokens=True)
history = history + [
{"role":"user","content":message},
{"role":"assistant","content":response}
]
return response, history
gr.ChatInterface(chat_fn).launch()
|