dilaksh06's picture
dpe
6e4990c
raw
history blame
1.77 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# βœ… Use valid model
MODEL_NAME = "ai4bharat/indictrans2-indic-indic-1B"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, trust_remote_code=True)
def translate(text: str, src_lang: str, tgt_lang: str) -> str:
"""Translate text from src_lang to tgt_lang using IndicTrans2."""
if not text.strip():
return "⚠️ Please enter some text to translate."
src_lang = src_lang.strip().lower()
tgt_lang = tgt_lang.strip().lower()
try:
# Format input as required by IndicTrans2
formatted_text = f"{src_lang}>>{tgt_lang} {text}"
inputs = tokenizer(formatted_text, return_tensors="pt")
# Generate translation
output_tokens = model.generate(**inputs, max_length=512)
translation = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
return translation
except Exception as e:
return f"❌ Error: {str(e)}"
# Gradio interface
demo = gr.Interface(
fn=translate,
inputs=[
gr.Textbox(label="Text", placeholder="Enter your text here..."),
gr.Textbox(label="Source Language Code (e.g., ta, hi, kn)", placeholder="ta"),
gr.Textbox(label="Target Language Code (e.g., en, hi, kn)", placeholder="en")
],
outputs=gr.Textbox(label="Translated Text"),
title="IndicTrans2 Language Translator",
description=(
"🌐 Translate text between Indian languages using "
"[ai4bharat/indictrans2-indic-indic-1B](https://huggingface.co/ai4bharat/indictrans2-indic-indic-1B)."
)
)
if __name__ == "__main__":
demo.launch()