Spaces:
Runtime error
Runtime error
dpe
Browse files- app.py +17 -59
- requirements.txt +3 -5
app.py
CHANGED
|
@@ -1,45 +1,23 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
|
| 6 |
-
# -------------------------------
|
| 7 |
-
MODEL_NAME = "ai4bharat/indictrans2-m2m-1B"
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
# LOAD MODEL & TOKENIZER
|
| 11 |
-
# -------------------------------
|
| 12 |
-
print("π₯ Loading model... This may take a moment.")
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 14 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 15 |
-
print("β
Model loaded successfully!")
|
| 16 |
|
| 17 |
-
# -------------------------------
|
| 18 |
-
# TRANSLATION FUNCTION
|
| 19 |
-
# -------------------------------
|
| 20 |
def translate(text: str, src_lang: str, tgt_lang: str) -> str:
|
| 21 |
-
"""
|
| 22 |
-
Translate text from `src_lang` to `tgt_lang` using IndicTrans2.
|
| 23 |
-
|
| 24 |
-
Args:
|
| 25 |
-
text (str): Input text to translate.
|
| 26 |
-
src_lang (str): Source language code (e.g., 'ta', 'en', 'hi').
|
| 27 |
-
tgt_lang (str): Target language code (e.g., 'en', 'ta', 'fr').
|
| 28 |
-
|
| 29 |
-
Returns:
|
| 30 |
-
str: Translated text or error message.
|
| 31 |
-
"""
|
| 32 |
if not text.strip():
|
| 33 |
return "β οΈ Please enter some text to translate."
|
| 34 |
|
| 35 |
-
if not src_lang.strip() or not tgt_lang.strip():
|
| 36 |
-
return "β οΈ Please provide both source and target language codes."
|
| 37 |
-
|
| 38 |
src_lang = src_lang.strip().lower()
|
| 39 |
tgt_lang = tgt_lang.strip().lower()
|
| 40 |
|
| 41 |
try:
|
| 42 |
-
# Format input
|
| 43 |
formatted_text = f"{src_lang}>>{tgt_lang} {text}"
|
| 44 |
inputs = tokenizer(formatted_text, return_tensors="pt")
|
| 45 |
|
|
@@ -47,45 +25,25 @@ def translate(text: str, src_lang: str, tgt_lang: str) -> str:
|
|
| 47 |
output_tokens = model.generate(**inputs, max_length=512)
|
| 48 |
translation = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
| 49 |
|
| 50 |
-
return translation
|
| 51 |
-
|
| 52 |
except Exception as e:
|
| 53 |
-
return f"β Error
|
| 54 |
|
| 55 |
-
#
|
| 56 |
-
# GRADIO UI
|
| 57 |
-
# -------------------------------
|
| 58 |
demo = gr.Interface(
|
| 59 |
fn=translate,
|
| 60 |
inputs=[
|
| 61 |
-
gr.Textbox(
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
lines=4
|
| 65 |
-
),
|
| 66 |
-
gr.Textbox(
|
| 67 |
-
label="Source Language Code (e.g., ta, en, hi)",
|
| 68 |
-
placeholder="ta"
|
| 69 |
-
),
|
| 70 |
-
gr.Textbox(
|
| 71 |
-
label="Target Language Code (e.g., en, ta, fr)",
|
| 72 |
-
placeholder="en"
|
| 73 |
-
)
|
| 74 |
],
|
| 75 |
-
outputs=gr.Textbox(
|
| 76 |
-
|
| 77 |
-
lines=4
|
| 78 |
-
),
|
| 79 |
-
title="π IndicTrans2 Language Translator",
|
| 80 |
description=(
|
| 81 |
-
"Translate between Indian
|
| 82 |
-
"[ai4bharat/indictrans2-
|
| 83 |
-
)
|
| 84 |
-
allow_flagging="never"
|
| 85 |
)
|
| 86 |
|
| 87 |
-
# -------------------------------
|
| 88 |
-
# RUN APP
|
| 89 |
-
# -------------------------------
|
| 90 |
if __name__ == "__main__":
|
| 91 |
-
demo.launch(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
|
| 4 |
+
# β
Use valid model
|
| 5 |
+
MODEL_NAME = "ai4bharat/indictrans2-indic-indic-1B"
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# Load tokenizer and model
|
|
|
|
|
|
|
|
|
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 9 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
|
|
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
def translate(text: str, src_lang: str, tgt_lang: str) -> str:
|
| 12 |
+
"""Translate text from src_lang to tgt_lang using IndicTrans2."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
if not text.strip():
|
| 14 |
return "β οΈ Please enter some text to translate."
|
| 15 |
|
|
|
|
|
|
|
|
|
|
| 16 |
src_lang = src_lang.strip().lower()
|
| 17 |
tgt_lang = tgt_lang.strip().lower()
|
| 18 |
|
| 19 |
try:
|
| 20 |
+
# Format input as required by IndicTrans2
|
| 21 |
formatted_text = f"{src_lang}>>{tgt_lang} {text}"
|
| 22 |
inputs = tokenizer(formatted_text, return_tensors="pt")
|
| 23 |
|
|
|
|
| 25 |
output_tokens = model.generate(**inputs, max_length=512)
|
| 26 |
translation = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
| 27 |
|
| 28 |
+
return translation
|
|
|
|
| 29 |
except Exception as e:
|
| 30 |
+
return f"β Error: {str(e)}"
|
| 31 |
|
| 32 |
+
# Gradio interface
|
|
|
|
|
|
|
| 33 |
demo = gr.Interface(
|
| 34 |
fn=translate,
|
| 35 |
inputs=[
|
| 36 |
+
gr.Textbox(label="Text", placeholder="Enter your text here..."),
|
| 37 |
+
gr.Textbox(label="Source Language Code (e.g., ta, hi, kn)", placeholder="ta"),
|
| 38 |
+
gr.Textbox(label="Target Language Code (e.g., en, hi, kn)", placeholder="en")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
],
|
| 40 |
+
outputs=gr.Textbox(label="Translated Text"),
|
| 41 |
+
title="IndicTrans2 Language Translator",
|
|
|
|
|
|
|
|
|
|
| 42 |
description=(
|
| 43 |
+
"π Translate text between Indian languages using "
|
| 44 |
+
"[ai4bharat/indictrans2-indic-indic-1B](https://huggingface.co/ai4bharat/indictrans2-indic-indic-1B)."
|
| 45 |
+
)
|
|
|
|
| 46 |
)
|
| 47 |
|
|
|
|
|
|
|
|
|
|
| 48 |
if __name__ == "__main__":
|
| 49 |
+
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
protobuf
|
| 5 |
-
gradio>=4.0.0
|
|
|
|
| 1 |
+
gradio>=5.0
|
| 2 |
+
transformers>=4.40
|
| 3 |
+
torch>=2.1
|
|
|
|
|
|