File size: 5,708 Bytes
e698a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import random
import numpy as np
import torch
import gradio as gr
from chatterbox.tts_turbo import ChatterboxTurboTTS

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

EVENT_TAGS = [
    "[clear throat]", "[sigh]", "[shush]", "[cough]", "[groan]",
    "[sniff]", "[gasp]", "[chuckle]", "[laugh]"
]

# --- REFINED CSS ---
# 1. tag-container: Forces the row to wrap items instead of scrolling. Removes borders/backgrounds.
# 2. tag-btn: Sets the specific look (indigo theme) and stops them from stretching.
CUSTOM_CSS = """
.tag-container {
    display: flex !important;
    flex-wrap: wrap !important; /* This fixes the one-per-line issue */
    gap: 8px !important;
    margin-top: 5px !important;
    margin-bottom: 10px !important;
    border: none !important;
    background: transparent !important;
}

.tag-btn {
    min-width: fit-content !important;
    width: auto !important;
    height: 32px !important;
    font-size: 13px !important;
    background: #eef2ff !important;
    border: 1px solid #c7d2fe !important;
    color: #3730a3 !important;
    border-radius: 6px !important;
    padding: 0 10px !important;
    margin: 0 !important;
    box-shadow: none !important;
}

.tag-btn:hover {
    background: #c7d2fe !important;
    transform: translateY(-1px);
}
"""

INSERT_TAG_JS = """
(tag_val, current_text) => {
    const textarea = document.querySelector('#main_textbox textarea');
    if (!textarea) return current_text + " " + tag_val; 

    const start = textarea.selectionStart;
    const end = textarea.selectionEnd;

    let prefix = " ";
    let suffix = " ";

    if (start === 0) prefix = "";
    else if (current_text[start - 1] === ' ') prefix = "";

    if (end < current_text.length && current_text[end] === ' ') suffix = "";

    return current_text.slice(0, start) + prefix + tag_val + suffix + current_text.slice(end);
}
"""


def set_seed(seed: int):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    random.seed(seed)
    np.random.seed(seed)


def load_model():
    print(f"Loading Chatterbox-Turbo on {DEVICE}...")
    model = ChatterboxTurboTTS.from_pretrained(DEVICE)
    return model


def generate(
        model,
        text,
        audio_prompt_path,
        temperature,
        seed_num,
        min_p,
        top_p,
        top_k,
        repetition_penalty,
        norm_loudness
):
    if model is None:
        model = ChatterboxTurboTTS.from_pretrained(DEVICE)

    if seed_num != 0:
        set_seed(int(seed_num))

    wav = model.generate(
        text,
        audio_prompt_path=audio_prompt_path,
        temperature=temperature,
        min_p=min_p,
        top_p=top_p,
        top_k=int(top_k),
        repetition_penalty=repetition_penalty,
        norm_loudness=norm_loudness,
    )
    return (model.sr, wav.squeeze(0).numpy())


with gr.Blocks(title="Chatterbox Turbo", css=CUSTOM_CSS) as demo:
    gr.Markdown("# ⚡ Chatterbox Turbo")

    model_state = gr.State(None)

    with gr.Row():
        with gr.Column():
            text = gr.Textbox(
                value="Oh, that's hilarious! [chuckle] Um anyway, we do have a new model in store. It's the SkyNet T-800 series and it's got basically everything. Including AI integration with ChatGPT and um all that jazz. Would you like me to get some prices for you?",
                label="Text to synthesize (max chars 300)",
                max_lines=5,
                elem_id="main_textbox"
            )

            # --- Event Tags ---
            # Switched back to Row, but applied specific CSS to force wrapping
            with gr.Row(elem_classes=["tag-container"]):
                for tag in EVENT_TAGS:
                    # elem_classes targets the button specifically
                    btn = gr.Button(tag, elem_classes=["tag-btn"])

                    btn.click(
                        fn=None,
                        inputs=[btn, text],
                        outputs=text,
                        js=INSERT_TAG_JS
                    )

            ref_wav = gr.Audio(
                sources=["upload", "microphone"],
                type="filepath",
                label="Reference Audio File",
                value="https://storage.googleapis.com/chatterbox-demo-samples/prompts/female_random_podcast.wav"
            )

            with gr.Accordion("Advanced Options", open=False):
                seed_num = gr.Number(value=0, label="Random seed (0 for random)")
                temp = gr.Slider(0.05, 2.0, step=.05, label="Temperature", value=0.8)
                top_p = gr.Slider(0.00, 1.00, step=0.01, label="Top P", value=0.95)
                top_k = gr.Slider(0, 1000, step=10, label="Top K", value=1000)
                repetition_penalty = gr.Slider(1.00, 2.00, step=0.05, label="Repetition Penalty", value=1.2)
                min_p = gr.Slider(0.00, 1.00, step=0.01, label="Min P (Set to 0 to disable)", value=0.00)
                norm_loudness = gr.Checkbox(value=True, label="Normalize Loudness (Match prompt volume)")

            run_btn = gr.Button("Generate ⚡", variant="primary")

        with gr.Column():
            audio_output = gr.Audio(label="Output Audio")

    demo.load(fn=load_model, inputs=[], outputs=model_state)

    run_btn.click(
        fn=generate,
        inputs=[
            model_state,
            text,
            ref_wav,
            temp,
            seed_num,
            min_p,
            top_p,
            top_k,
            repetition_penalty,
            norm_loudness,
        ],
        outputs=audio_output,
    )

if __name__ == "__main__":
    demo.queue(
        max_size=50,
        default_concurrency_limit=1,
    ).launch(share=True)