modernbert-clinc

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1681
  • Accuracy: 0.9690
  • F1: 0.9687

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.3344 0.6276 150 0.5836 0.8506 0.8448
0.3067 1.2552 300 0.3733 0.9139 0.9111
0.2089 1.8828 450 0.2463 0.9474 0.9470
0.1132 2.5105 600 0.2390 0.9487 0.9486
0.0618 3.1381 750 0.2183 0.9587 0.9582
0.0456 3.7657 900 0.1987 0.9616 0.9611
0.0377 4.3933 1050 0.1871 0.9655 0.9650
0.0204 5.0209 1200 0.1688 0.9684 0.9681
0.0092 5.6485 1350 0.1681 0.9690 0.9687

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
4
Safetensors
Model size
0.4B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for simon-mellergaard/modernbert-clinc

Finetuned
(227)
this model

Evaluation results