roberta-large-pr_tqacd
This model is a fine-tuned version of FacebookAI/roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.3352
- F1 Macro: 0.5698
- Precision: 0.5840
- Recall: 0.5633
- Accuracy: 0.7476
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 354 | 1.9174 | 0.3780 | 0.4605 | 0.3785 | 0.5650 |
| 2.289 | 2.0 | 708 | 1.2911 | 0.5305 | 0.5284 | 0.5883 | 0.6926 |
| 1.5337 | 3.0 | 1062 | 1.3022 | 0.5340 | 0.5466 | 0.5812 | 0.7001 |
| 1.5337 | 4.0 | 1416 | 1.3496 | 0.5526 | 0.5623 | 0.5737 | 0.7288 |
| 1.0847 | 5.0 | 1770 | 1.4333 | 0.5665 | 0.5774 | 0.5961 | 0.7439 |
| 0.6609 | 6.0 | 2124 | 1.5549 | 0.5681 | 0.5782 | 0.5880 | 0.7444 |
| 0.6609 | 7.0 | 2478 | 1.9182 | 0.5561 | 0.5543 | 0.5754 | 0.7269 |
| 0.388 | 8.0 | 2832 | 2.0856 | 0.5709 | 0.5799 | 0.5793 | 0.7387 |
| 0.1976 | 9.0 | 3186 | 2.4609 | 0.5564 | 0.5545 | 0.5706 | 0.7368 |
| 0.1383 | 10.0 | 3540 | 2.7571 | 0.5801 | 0.5833 | 0.5914 | 0.7467 |
| 0.1383 | 11.0 | 3894 | 3.0987 | 0.5700 | 0.5757 | 0.5711 | 0.75 |
| 0.0618 | 12.0 | 4248 | 3.3352 | 0.5698 | 0.5840 | 0.5633 | 0.7476 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 5
Model tree for rendchevi/roberta-large-pr_tqacd
Base model
FacebookAI/roberta-large