mental-longformer-base-4096-tqacd
This model is a fine-tuned version of AIMH/mental-longformer-base-4096 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2218
- F1 Macro: 0.2261
- Precision: 0.2281
- Recall: 0.2573
- Accuracy: 0.2871
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 114 | 2.3947 | 0.0284 | 0.1015 | 0.1029 | 0.0644 |
| No log | 2.0 | 228 | 2.3175 | 0.0872 | 0.1022 | 0.1692 | 0.1733 |
| No log | 3.0 | 342 | 2.1417 | 0.2113 | 0.3639 | 0.2722 | 0.2970 |
| No log | 4.0 | 456 | 2.0998 | 0.2426 | 0.2429 | 0.2659 | 0.3861 |
| 2.2138 | 5.0 | 570 | 2.1215 | 0.2420 | 0.2364 | 0.3011 | 0.3267 |
| 2.2138 | 6.0 | 684 | 2.2218 | 0.2261 | 0.2281 | 0.2573 | 0.2871 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- -
Model tree for rendchevi/mental-longformer-base-4096-tqacd
Base model
AIMH/mental-longformer-base-4096