train_multirc_456_1767293631

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the multirc dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3149
  • Num Input Tokens Seen: 264580656

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.03
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 456
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2949 1.0 6130 0.3256 13210560
0.373 2.0 12260 0.3230 26427632
0.3255 3.0 18390 0.3175 39656608
0.3282 4.0 24520 0.3211 52911264
0.3086 5.0 30650 0.3241 66151456
0.4401 6.0 36780 0.3199 79368416
0.3078 7.0 42910 0.3226 92601264
0.3617 8.0 49040 0.3169 105825424
0.322 9.0 55170 0.3192 119051808
0.2832 10.0 61300 0.3191 132282512
0.3129 11.0 67430 0.3181 145503424
0.3616 12.0 73560 0.3156 158718688
0.3026 13.0 79690 0.3163 171968272
0.3285 14.0 85820 0.3208 185192912
0.3308 15.0 91950 0.3165 198406496
0.4025 16.0 98080 0.3157 211654512
0.3549 17.0 104210 0.3156 224875552
0.3564 18.0 110340 0.3156 238097088
0.3044 19.0 116470 0.3153 251336240
0.2477 20.0 122600 0.3149 264580656

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_multirc_456_1767293631

Adapter
(2202)
this model