train_mnli_42_1767887022

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the mnli dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1062
  • Num Input Tokens Seen: 312915968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.0033 0.5 88358 0.1789 15653504
0.0058 1.0 176716 0.1181 31283664
0.0653 1.5 265074 0.1154 46924576
0.0036 2.0 353432 0.1220 62587160
0.0059 2.5 441790 0.1077 78223688
0.0076 3.0 530148 0.1124 93878760
0.0032 3.5 618506 0.1145 109512680
0.0038 4.0 706864 0.1124 125170816
0.0136 4.5 795222 0.1062 140807360
0.0013 5.0 883580 0.1107 156460936
0.004 5.5 971938 0.1080 172101320
0.0994 6.0 1060296 0.1091 187749624
0.5485 6.5 1148654 0.1159 203384056
0.0711 7.0 1237012 0.1158 219037384
0.0051 7.5 1325370 0.1166 234681720
0.4636 8.0 1413728 0.1132 250330736
0.0016 8.5 1502086 0.1186 265969568
0.0034 9.0 1590444 0.1195 281623656
0.1838 9.5 1678802 0.1205 297267640
0.3616 10.0 1767160 0.1212 312915968

Framework versions

  • PEFT 0.17.1
  • Transformers 4.51.3
  • Pytorch 2.9.1+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_mnli_42_1767887022

Adapter
(2367)
this model