File size: 1,677 Bytes
f521926 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: mit
library_name: keras
tags:
- image-classification
- multi-task-learning
- art
- painting-classification
- mobilenet-v2
datasets:
- huggan/wikiart
metrics:
- accuracy
- top-5-accuracy
---
# WikiArt Multi-Task Painting Classifier
A multi-task deep learning model for classifying paintings by **artist**, **genre**, and **style** simultaneously.
## Model Description
This model performs three classification tasks on painting images:
- **Artist Classification**: 129 artists (Claude Monet, Van Gogh, Picasso, Da Vinci, etc.)
- **Genre Classification**: 11 genres (portrait, landscape, abstract painting, etc.)
- **Style Classification**: 27 art styles (Impressionism, Cubism, Renaissance, Baroque, etc.)
## Model Architecture
- **Base Model**: MobileNetV2 (pre-trained on ImageNet)
- **Framework**: TensorFlow/Keras
- **Input**: 224×224 RGB images
- **Approach**: Multi-head architecture with shared convolutional base
- **Total Parameters**: ~3.5M (approximate)
## Training Details
### Dataset
- **Source**: [WikiArt dataset](https://huggingface.co/datasets/huggan/wikiart)
- **Total Images**: 84,440 paintings
- **Split**: 75% training, 25% validation
### Training Procedure
- **Preprocessing**: MobileNetV2 preprocessing (normalization)
- **Augmentation**: Random horizontal flip, rotation (±5°), zoom (±10%)
- **Optimizer**: Adam (1e-3 for frozen, 2e-4 for fine-tuning)
- **Loss**: Sparse categorical cross-entropy (for all three tasks)
- **Training Stages**:
1. Frozen backbone (2 epochs)
2. Full fine-tuning (10 epochs)
### Evaluation Metrics
- Top-1 Accuracy (all tasks)
- Top-5 Accuracy (artist and style)
## How to Use
### Load Model
|