Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,59 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
library_name: keras
|
| 4 |
+
tags:
|
| 5 |
+
- image-classification
|
| 6 |
+
- multi-task-learning
|
| 7 |
+
- art
|
| 8 |
+
- painting-classification
|
| 9 |
+
- mobilenet-v2
|
| 10 |
+
datasets:
|
| 11 |
+
- huggan/wikiart
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
- top-5-accuracy
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# WikiArt Multi-Task Painting Classifier
|
| 18 |
+
|
| 19 |
+
A multi-task deep learning model for classifying paintings by **artist**, **genre**, and **style** simultaneously.
|
| 20 |
+
|
| 21 |
+
## Model Description
|
| 22 |
+
|
| 23 |
+
This model performs three classification tasks on painting images:
|
| 24 |
+
- **Artist Classification**: 129 artists (Claude Monet, Van Gogh, Picasso, Da Vinci, etc.)
|
| 25 |
+
- **Genre Classification**: 11 genres (portrait, landscape, abstract painting, etc.)
|
| 26 |
+
- **Style Classification**: 27 art styles (Impressionism, Cubism, Renaissance, Baroque, etc.)
|
| 27 |
+
|
| 28 |
+
## Model Architecture
|
| 29 |
+
|
| 30 |
+
- **Base Model**: MobileNetV2 (pre-trained on ImageNet)
|
| 31 |
+
- **Framework**: TensorFlow/Keras
|
| 32 |
+
- **Input**: 224×224 RGB images
|
| 33 |
+
- **Approach**: Multi-head architecture with shared convolutional base
|
| 34 |
+
- **Total Parameters**: ~3.5M (approximate)
|
| 35 |
+
|
| 36 |
+
## Training Details
|
| 37 |
+
|
| 38 |
+
### Dataset
|
| 39 |
+
- **Source**: [WikiArt dataset](https://huggingface.co/datasets/huggan/wikiart)
|
| 40 |
+
- **Total Images**: 84,440 paintings
|
| 41 |
+
- **Split**: 75% training, 25% validation
|
| 42 |
+
|
| 43 |
+
### Training Procedure
|
| 44 |
+
- **Preprocessing**: MobileNetV2 preprocessing (normalization)
|
| 45 |
+
- **Augmentation**: Random horizontal flip, rotation (±5°), zoom (±10%)
|
| 46 |
+
- **Optimizer**: Adam (1e-3 for frozen, 2e-4 for fine-tuning)
|
| 47 |
+
- **Loss**: Sparse categorical cross-entropy (for all three tasks)
|
| 48 |
+
- **Training Stages**:
|
| 49 |
+
1. Frozen backbone (2 epochs)
|
| 50 |
+
2. Full fine-tuning (10 epochs)
|
| 51 |
+
|
| 52 |
+
### Evaluation Metrics
|
| 53 |
+
- Top-1 Accuracy (all tasks)
|
| 54 |
+
- Top-5 Accuracy (artist and style)
|
| 55 |
+
|
| 56 |
+
## How to Use
|
| 57 |
+
|
| 58 |
+
### Load Model
|
| 59 |
+
|