meetran commited on
Commit
f521926
·
verified ·
1 Parent(s): d127a42

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -3
README.md CHANGED
@@ -1,3 +1,59 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: keras
4
+ tags:
5
+ - image-classification
6
+ - multi-task-learning
7
+ - art
8
+ - painting-classification
9
+ - mobilenet-v2
10
+ datasets:
11
+ - huggan/wikiart
12
+ metrics:
13
+ - accuracy
14
+ - top-5-accuracy
15
+ ---
16
+
17
+ # WikiArt Multi-Task Painting Classifier
18
+
19
+ A multi-task deep learning model for classifying paintings by **artist**, **genre**, and **style** simultaneously.
20
+
21
+ ## Model Description
22
+
23
+ This model performs three classification tasks on painting images:
24
+ - **Artist Classification**: 129 artists (Claude Monet, Van Gogh, Picasso, Da Vinci, etc.)
25
+ - **Genre Classification**: 11 genres (portrait, landscape, abstract painting, etc.)
26
+ - **Style Classification**: 27 art styles (Impressionism, Cubism, Renaissance, Baroque, etc.)
27
+
28
+ ## Model Architecture
29
+
30
+ - **Base Model**: MobileNetV2 (pre-trained on ImageNet)
31
+ - **Framework**: TensorFlow/Keras
32
+ - **Input**: 224×224 RGB images
33
+ - **Approach**: Multi-head architecture with shared convolutional base
34
+ - **Total Parameters**: ~3.5M (approximate)
35
+
36
+ ## Training Details
37
+
38
+ ### Dataset
39
+ - **Source**: [WikiArt dataset](https://huggingface.co/datasets/huggan/wikiart)
40
+ - **Total Images**: 84,440 paintings
41
+ - **Split**: 75% training, 25% validation
42
+
43
+ ### Training Procedure
44
+ - **Preprocessing**: MobileNetV2 preprocessing (normalization)
45
+ - **Augmentation**: Random horizontal flip, rotation (±5°), zoom (±10%)
46
+ - **Optimizer**: Adam (1e-3 for frozen, 2e-4 for fine-tuning)
47
+ - **Loss**: Sparse categorical cross-entropy (for all three tasks)
48
+ - **Training Stages**:
49
+ 1. Frozen backbone (2 epochs)
50
+ 2. Full fine-tuning (10 epochs)
51
+
52
+ ### Evaluation Metrics
53
+ - Top-1 Accuracy (all tasks)
54
+ - Top-5 Accuracy (artist and style)
55
+
56
+ ## How to Use
57
+
58
+ ### Load Model
59
+