Interactive-MEN-RT

Domain-Specialized Interactive Segmentation for Meningioma Radiotherapy Planning

Status: Research prototype β€” Not for clinical use.

Overview

Interactive 3D meningioma segmentation framework built on nnU-Net v2 and nnInteractive.

  • Performance: 77.6% Dice, 64.8% IoU (BraTS 2025 Meningioma RT)
  • Interaction Modes: Point, scribble, box, lasso
  • Input: T1c MRI (contrast-enhanced)

Files

nnUNetInteractionTrainer__nnUNetPlans__3d_fullres_scratch/
β”œβ”€β”€ plans.json
β”œβ”€β”€ dataset.json
└── fold_0/
    β”œβ”€β”€ checkpoint_best.pth (820 MB)
    └── checkpoint_final.pth (820 MB)

Quick Start

from huggingface_hub import snapshot_download
import os

# Download checkpoint
root = snapshot_download(
    "hanjang/Interactive-MEN-RT",
    allow_patterns=["nnUNetInteractionTrainer__nnUNetPlans__3d_fullres_scratch/**"]
)
CKPT = os.path.join(root, "nnUNetInteractionTrainer__nnUNetPlans__3d_fullres_scratch")

# Load and run inference
from Interactive_MEN_RT_predictor import InteractiveMENRTPredictor
import torch, numpy as np

predictor = InteractiveMENRTPredictor(
    device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
)
predictor.initialize_from_trained_model_folder(
    model_training_output_dir=CKPT,
    use_fold=0,
    checkpoint_name="checkpoint_best.pth"
)

# Run on your volume (shape: 1, H, W, D)
predictor.reset_interactions()
predictor.set_image(volume)
predictor.set_target_buffer(np.zeros_like(volume[0], np.float32))
predictor._finish_preprocessing_and_initialize_interactions()
predictor._predict_without_interaction()
prediction = (predictor.target_buffer > 0.5).astype(np.uint8)

Citation

@inproceedings{interactive-men-rt-2025,
  title={Domain-Specialized Interactive Segmentation Framework for Meningioma Radiotherapy Planning},
  author={Junhyeok Lee, Han Jang and Kyu Sung Choi},
  booktitle={MICCAI CLIP Workshop},
  year={2025}
}

Links

GitHub: snuh-rad-aicon/Interactive-MEN-RT

Contact: [email protected]

Developed at Seoul National University AICON Lab

Research only. Not for clinical use.


Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Space using hanjang/Interactive-MEN-RT 1