Interactive-MEN-RT
Domain-Specialized Interactive Segmentation for Meningioma Radiotherapy Planning
Status: Research prototype β Not for clinical use.
Overview
Interactive 3D meningioma segmentation framework built on nnU-Net v2 and nnInteractive.
- Performance: 77.6% Dice, 64.8% IoU (BraTS 2025 Meningioma RT)
- Interaction Modes: Point, scribble, box, lasso
- Input: T1c MRI (contrast-enhanced)
Files
nnUNetInteractionTrainer__nnUNetPlans__3d_fullres_scratch/
βββ plans.json
βββ dataset.json
βββ fold_0/
βββ checkpoint_best.pth (820 MB)
βββ checkpoint_final.pth (820 MB)
Quick Start
from huggingface_hub import snapshot_download
import os
# Download checkpoint
root = snapshot_download(
"hanjang/Interactive-MEN-RT",
allow_patterns=["nnUNetInteractionTrainer__nnUNetPlans__3d_fullres_scratch/**"]
)
CKPT = os.path.join(root, "nnUNetInteractionTrainer__nnUNetPlans__3d_fullres_scratch")
# Load and run inference
from Interactive_MEN_RT_predictor import InteractiveMENRTPredictor
import torch, numpy as np
predictor = InteractiveMENRTPredictor(
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
)
predictor.initialize_from_trained_model_folder(
model_training_output_dir=CKPT,
use_fold=0,
checkpoint_name="checkpoint_best.pth"
)
# Run on your volume (shape: 1, H, W, D)
predictor.reset_interactions()
predictor.set_image(volume)
predictor.set_target_buffer(np.zeros_like(volume[0], np.float32))
predictor._finish_preprocessing_and_initialize_interactions()
predictor._predict_without_interaction()
prediction = (predictor.target_buffer > 0.5).astype(np.uint8)
Citation
@inproceedings{interactive-men-rt-2025,
title={Domain-Specialized Interactive Segmentation Framework for Meningioma Radiotherapy Planning},
author={Junhyeok Lee, Han Jang and Kyu Sung Choi},
booktitle={MICCAI CLIP Workshop},
year={2025}
}
Links
GitHub: snuh-rad-aicon/Interactive-MEN-RT
Contact: [email protected]
Developed at Seoul National University AICON Lab
Research only. Not for clinical use.