Dataset Viewer
Auto-converted to Parquet Duplicate
query-id
stringlengths
7
9
corpus-id
stringlengths
9
11
score
float64
1
1
query_118
passage_118
1
query_921
passage_921
1
query_722
passage_722
1
query_843
passage_843
1
query_665
passage_665
1
query_935
passage_935
1
query_789
passage_789
1
query_375
passage_375
1
query_794
passage_794
1
query_206
passage_206
1
query_690
passage_690
1
query_50
passage_50
1
query_497
passage_497
1
query_318
passage_318
1
query_977
passage_977
1
query_973
passage_973
1
query_604
passage_604
1
query_929
passage_929
1
query_620
passage_620
1
query_827
passage_827
1
query_105
passage_105
1
query_450
passage_450
1
query_178
passage_178
1
query_184
passage_184
1
query_391
passage_391
1
query_124
passage_124
1
query_826
passage_826
1
query_914
passage_914
1
query_911
passage_911
1
query_513
passage_513
1
query_541
passage_541
1
query_745
passage_745
1
query_714
passage_714
1
query_422
passage_422
1
query_990
passage_990
1
query_980
passage_980
1
query_16
passage_16
1
query_12
passage_12
1
query_390
passage_390
1
query_353
passage_353
1
query_715
passage_715
1
query_925
passage_925
1
query_842
passage_842
1
query_657
passage_657
1
query_492
passage_492
1
query_47
passage_47
1
query_188
passage_188
1
query_415
passage_415
1
query_230
passage_230
1
query_672
passage_672
1
query_159
passage_159
1
query_461
passage_461
1
query_637
passage_637
1
query_636
passage_636
1
query_48
passage_48
1
query_978
passage_978
1
query_90
passage_90
1
query_506
passage_506
1
query_572
passage_572
1
query_216
passage_216
1
query_383
passage_383
1
query_755
passage_755
1
query_330
passage_330
1
query_419
passage_419
1
query_787
passage_787
1
query_211
passage_211
1
query_292
passage_292
1
query_433
passage_433
1
query_24
passage_24
1
query_18
passage_18
1
query_151
passage_151
1
query_531
passage_531
1
query_509
passage_509
1
query_58
passage_58
1
query_850
passage_850
1
query_177
passage_177
1
query_234
passage_234
1
query_65
passage_65
1
query_607
passage_607
1
query_546
passage_546
1
query_480
passage_480
1
query_668
passage_668
1
query_824
passage_824
1
query_434
passage_434
1
query_575
passage_575
1
query_349
passage_349
1
query_893
passage_893
1
query_423
passage_423
1
query_814
passage_814
1
query_386
passage_386
1
query_753
passage_753
1
query_806
passage_806
1
query_340
passage_340
1
query_136
passage_136
1
query_974
passage_974
1
query_874
passage_874
1
query_165
passage_165
1
query_396
passage_396
1
query_167
passage_167
1
query_23
passage_23
1
End of preview. Expand in Data Studio

ECHR Retrieval πŸ›οΈ

ECHR Retrieval by Isaacus is a challenging legal information retrieval evaluation dataset consisting of 200 short summaries of findings of European Court of Human Rights decisions paired with the text of those decisions sourced from the HUDOC database.

This dataset is intended to stress test the ability of an information retrieval model to retrieve relevant court decisions given arbitrary legal holdings.

This dataset forms part of the Massive Legal Embeddings Benchmark (MLEB), the largest, most diverse, and most comprehensive benchmark for legal text embedding models. ECHR Retrieval was added to MLEB on 20 February 2026.

Structure πŸ—‚οΈ

As per the MTEB information retrieval dataset format, this dataset comprises three splits, default, corpus and queries.

The default split pairs summaries (query-id) with decisions (corpus-id), each pair having a score of 1.

The corpus split contains European Court of Human Rights decisions, with the text of decisions being stored in the text key and their ids being stored in the _id key. There is also a title column which is deliberately set to an empty string in all cases for compatibility with the mteb library.

The queries split contains summaries of the findings of decisions, with the text of summaries being stored in the text key and their ids being stored in the _id key.

Methodology πŸ§ͺ

This dataset was constructed by collecting all publicly available European Court of Human Rights decisions, cleaning them, and then sampling 200 summary-decision pairs for inclusion in this dataset.

License πŸ“œ

This dataset is licensed under CC BY 4.0 which allows for both non-commercial and commercial use of this dataset as long as appropriate attribution is made to it.

Citation πŸ”–

If you use this dataset, please cite the Massive Legal Embeddings Benchmark (MLEB):

@misc{butler2025massivelegalembeddingbenchmark,
      title={The Massive Legal Embedding Benchmark (MLEB)}, 
      author={Umar Butler and Abdur-Rahman Butler and Adrian Lucas Malec},
      year={2025},
      eprint={2510.19365},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2510.19365}, 
}
Downloads last month
32

Collection including isaacus/echr-retrieval

Paper for isaacus/echr-retrieval