Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: agpl-3.0
5
+ tags:
6
+ - video
7
+ - soccernet
8
+ - football
9
+ - soccer
10
+ - sport
11
+ - action-anticipation
12
+ size_categories: # Number of clips
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - SoccerNet/SN-BAS-2024
16
+ # HuggingFace does not have a task category for action anticipation. Therefore, I had to remove the task_categories tag
17
+ #task_categories:
18
+ #- action-anticipation
19
+ ---
20
+
21
+ <!-- Builds from the template https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1 -->
22
+
23
+ # SoccerNet Challenge 2026 - Action Anticipation Dataset
24
+
25
+ <!-- Provide a quick summary of the dataset. -->
26
+
27
+ The SoccerNet Action Anticipation dataset splits the [2024 ball action spotting dataset](https://huggingface.co/datasets/SoccerNet/SN-BAS-2024) into 30 second clips, which can then be used to anticipate between 10 action classes that will happen 5 seconds into the future. This is the dataset used for 2026 SoccerNet Action Anticipation challenge.
28
+
29
+ ## Relevant Links
30
+
31
+ <!-- Provide the basic links for the dataset. -->
32
+
33
+ - **Repository:** https://github.com/MohamadDalal/FAANTRA
34
+ - **Paper:** https://huggingface.co/papers/2504.12021
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the dataset is intended to be used. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section describes suitable use cases for the dataset. -->
43
+
44
+ The direct use of this dataset is to participate in the 2026 SoccerNet Action Anticipation challenge. For a quick demo the FAANTRA repository can be used to train and evaluate on the dataset.
45
+
46
+ ### Other Use
47
+
48
+ The dataset can be used for further action anticipation research within the soccer field.
49
+
50
+ ## Download
51
+
52
+ The setup_dataset_BAA.py script inside the FAANTRA repository can be used to download and setup the dataset.
53
+
54
+ ## Dataset Structure
55
+
56
+ <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
57
+
58
+ The dataset is structured as:
59
+ ```
60
+ 224p
61
+ |_train.zip
62
+ |_valid.zip
63
+ |_test.zip
64
+ |_challenge.zip
65
+ 720p
66
+ |_train.zip
67
+ |_valid.zip
68
+ |_test.zip
69
+ |_challenge.zip
70
+ ```
71
+ Each zip file contains a split at a specific resolution. Each split is structured as:
72
+ ```
73
+ split
74
+ |_clip_1
75
+ |_{224p|720p}.mp4
76
+ |_clip_2
77
+ |_{224p|720p}.mp4
78
+ ...
79
+ |_Labels-ball.json
80
+ ```
81
+
82
+ The challenge split however, does not contain annotations, and therefore does not have the Labels-ball.json file.
83
+
84
+ ## Citation
85
+
86
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
87
+
88
+ **BibTeX:**
89
+ ```
90
+ @InProceedings{Dalal_2025_CVPR,
91
+ author = {Dalal, Mohamad and Xarles, Artur and Cioppa, Anthony and Giancola, Silvio and Van Droogenbroeck, Marc and Ghanem, Bernard and Clap\'es, Albert and Escalera, Sergio and Moeslund, Thomas B.},
92
+ title = {Action Anticipation from SoccerNet Football Video Broadcasts},
93
+ booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
94
+ month = {June},
95
+ year = {2025},
96
+ pages = {6126-6137}
97
+ }
98
+ ```