The dataset viewer is not available for this dataset.
Error code: ConfigNamesError
Exception: ReadTimeout
Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 25c8100e-c906-4e78-8b8e-8bf84846469f)')
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
).get_module()
^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 631, in get_module
patterns = get_data_patterns(base_path, download_config=self.download_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 473, in get_data_patterns
return _get_data_files_patterns(resolver)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 262, in _get_data_files_patterns
data_files = pattern_resolver(pattern)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 360, in resolve_pattern
for filepath, info in fs.glob(pattern, detail=True, **glob_kwargs).items()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 520, in glob
path = self.resolve_path(path, revision=kwargs.get("revision")).unresolve()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path
repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist
self._api.repo_info(
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2816, in repo_info
return method(
^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2673, in dataset_info
r = get_session().get(path, headers=headers, timeout=timeout, params=params)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 602, in get
return self.request("GET", url, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 589, in request
resp = self.send(prep, **send_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 703, in send
r = adapter.send(request, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 96, in send
return super().send(request, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/adapters.py", line 690, in send
raise ReadTimeout(e, request=request)
requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 25c8100e-c906-4e78-8b8e-8bf84846469f)')Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models
A Challenging Visual-centric Benchmark for Evaluating Multimodal Reasoning in MLLMs!
This is the Benchmark data repo of VisuLogic.
For more details, please refer to the project page with dataset exploration and visualization tools: https://visulogic-benchmark.github.io/VisuLogic/.
VisuLogic Resouces
π Homepage | π Leaderboard | π Paper | π€ Benchmark | π€ Train Data
π» Eval Code | π» Train Code | π€ Checkpoint (7B) | π€ Checkpoint (38B)
πNews
- π₯[2025-06-28] Release the SFT data! π
- π₯[2025-04-26] VisuLogic has been merged into VLMEvalkit. You can evaluate your model on VisuLogic with it ! Usage see VLMEvalkit ! π
- π₯[2025-04-22] Release the paper, training data and training code! π
- π₯[2025-04-08] Release the benchmark and the code! π
β To-do
- Release the benchmark dataset and eval code
- Release training code
- Release the paper
- Release the training dataset
- Release model ckpts
π Introduction
VisuLogic is a newly designed benchmark aimed at evaluating the visual reasoning capabilities of Multi-modal Large Language Models (MLLMs), independent of textual reasoning processes. It features carefully constructed visual reasoning tasks spanning multiple categories, divided into six types based on required reasoning skills (e.g., Quantitative Reasoning, which involves understanding and deducing changes in the quantity of elements in images). Unlike existing benchmarks, VisuLogic is a challenging visual reasoning benchmark that is inherently difficult to articulate using language, providing a more rigorous evaluation of the visual reasoning capabilities of MLLMs. Most models score below 30% accuracyβonly slightly above the 25% random baseline and far below the 51.4% achieved by humansβrevealing significant gaps in visual reasoning.

π Key Features
π Visuo-Logical Challenge
The first benchmark to integrate visual perception with logical reasoning, enabling authentic multimodal evaluation. Most models score below 30% accuracyβonly slightly above the 25% random baseline and far below the 51.4% achieved by humansβrevealing significant gaps in visual reasoning.π οΈ Rigorous Design
Includes 1,000 meticulously curated questions, spanning 6 domains and 24 subcategories, for comprehensive performance evaluation.π Anti-Linguistic Shortcut
Designed to avoid linguistic reasoning, ensuring tasks rely on genuine visual reasoning rather than shortcuts.π‘ RL Exploration
We identify the RL technique as a promising direction for improving the visual reasoning capabilities of MLLMs. Through RL method, models reach SOTA in VisuLogic!β Fully Open-source
We open-source all the evaluation code, training scripts, and datasets associated with this work to promote further research and innovation.
πΌοΈ Examples of VisuLogic
π Eval
Please refer to VisuLogic-Eval for eval code.
π¦ Training
Please refer to VisuLogic-Train for training code.
π© Contact
- Weiye Xu: [email protected]
- Jiahao Wang: [email protected]
π Citation
BibTeX:
@article{xu2025visulogic,
title={VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models},
author={Xu, Weiye and Wang, Jiahao and Wang, Weiyun and Chen, Zhe and Zhou, Wengang and Yang, Aijun and Lu, Lewei and Li, Houqiang and Wang, Xiaohua and Zhu, Xizhou and Wang, Wenhai and Dai, Jifeng and Zhu, Jinguo},
journal={arXiv preprint arXiv:2504.15279},
year={2025},
url={https://arxiv.org/abs/2504.15279}
}
π Thank you for your interest in VisuLogic! We hope this benchmark helps drive advancements in multimodal reasoning! π
- Downloads last month
- 15
