comment__id
stringlengths 24
24
| hate_speech_saliency_term
stringlengths 3
99
| hate_speech_saliency_score
float64 0
1
| dataset_version
stringclasses 1
value |
|---|---|---|---|
673b9832f912ac867c61cf91
|
questi
| 0.36
|
0.0.0
|
673b9832f912ac867c61cf91
|
conoscono
| 0.64
|
0.0.0
|
673b9832f912ac867c61cf92
|
top
| 0.17
|
0.0.0
|
673b9832f912ac867c61cf92
|
meme
| 0.83
|
0.0.0
|
673b9832f912ac867c61cf93
|
tried
| 0.603
|
0.0.0
|
673b9832f912ac867c61cf93
|
himself
| 0.397
|
0.0.0
|
673b9832f912ac867c61cf94
|
morendo
| 0.123
|
0.0.0
|
673b9832f912ac867c61cf94
|
salvini
| 0.109
|
0.0.0
|
673b9832f912ac867c61cf94
|
shagahagahahah
| 0.768
|
0.0.0
|
673b9832f912ac867c61cf95
|
rotoli
| 0.158
|
0.0.0
|
673b9832f912ac867c61cf95
|
impegna
| 0.143
|
0.0.0
|
673b9832f912ac867c61cf95
|
fotomontaggi
| 0.342
|
0.0.0
|
673b9832f912ac867c61cf95
|
social😂
| 0.357
|
0.0.0
|
673b9832f912ac867c61cf96
|
ero
| 0.317
|
0.0.0
|
673b9832f912ac867c61cf96
|
cringe
| 0.683
|
0.0.0
|
673b9832f912ac867c61cf97
|
endgame
| 1
|
0.0.0
|
673b9832f912ac867c61cf98
|
essere
| 0.131
|
0.0.0
|
673b9832f912ac867c61cf98
|
sfigato
| 0.172
|
0.0.0
|
673b9832f912ac867c61cf98
|
stronzi
| 0.13
|
0.0.0
|
673b9832f912ac867c61cf98
|
ruolo
| 0.082
|
0.0.0
|
673b9832f912ac867c61cf98
|
augurerei
| 0.252
|
0.0.0
|
673b9832f912ac867c61cf98
|
manco
| 0.073
|
0.0.0
|
673b9832f912ac867c61cf98
|
scemo
| 0.085
|
0.0.0
|
673b9832f912ac867c61cf98
|
matte
| 0.075
|
0.0.0
|
673b9832f912ac867c61cf99
|
egoriferito
| 1
|
0.0.0
|
673b9832f912ac867c61cf9a
|
love
| 0.552
|
0.0.0
|
673b9832f912ac867c61cf9a
|
from
| 0.448
|
0.0.0
|
673b9832f912ac867c61cf9b
|
ahahhhhhhhhbahah
| 1
|
0.0.0
|
673b9832f912ac867c61cf9c
|
matteo
| 0.218
|
0.0.0
|
673b9832f912ac867c61cf9c
|
tipo
| 0.127
|
0.0.0
|
673b9832f912ac867c61cf9c
|
quella
| 0.08
|
0.0.0
|
673b9832f912ac867c61cf9c
|
persona
| 0.135
|
0.0.0
|
673b9832f912ac867c61cf9c
|
cerca
| 0.089
|
0.0.0
|
673b9832f912ac867c61cf9c
|
infilarsi
| 0.351
|
0.0.0
|
673b9832f912ac867c61cf9d
|
😂😂😂😂😂cringe
| 1
|
0.0.0
|
673b9832f912ac867c61cf9e
|
ormai
| 0.179
|
0.0.0
|
673b9832f912ac867c61cf9e
|
gusto
| 0.19
|
0.0.0
|
673b9832f912ac867c61cf9e
|
satira
| 0.441
|
0.0.0
|
673b9832f912ac867c61cf9e
|
salvini
| 0.19
|
0.0.0
|
673b9832f912ac867c61cf9f
|
ministro
| 0.085
|
0.0.0
|
673b9832f912ac867c61cf9f
|
riuscirebbe
| 0.067
|
0.0.0
|
673b9832f912ac867c61cf9f
|
disastrosa
| 0.089
|
0.0.0
|
673b9832f912ac867c61cf9f
|
ferrovie
| 0.106
|
0.0.0
|
673b9832f912ac867c61cf9f
|
ministro
| 0.166
|
0.0.0
|
673b9832f912ac867c61cf9f
|
trasporti
| 0.146
|
0.0.0
|
673b9832f912ac867c61cf9f
|
interno
| 0.105
|
0.0.0
|
673b9832f912ac867c61cf9f
|
istruzione
| 0.137
|
0.0.0
|
673b9832f912ac867c61cf9f
|
esteri
| 0.098
|
0.0.0
|
673b9832f912ac867c61cfa0
|
academia
| 1
|
0.0.0
|
673b9832f912ac867c61cfa1
|
presente
| 0.071
|
0.0.0
|
673b9832f912ac867c61cfa1
|
matrimonio
| 0.072
|
0.0.0
|
673b9832f912ac867c61cfa1
|
cerca
| 0.093
|
0.0.0
|
673b9832f912ac867c61cfa1
|
infilarsi
| 0.457
|
0.0.0
|
673b9832f912ac867c61cfa1
|
forza
| 0.082
|
0.0.0
|
673b9832f912ac867c61cfa1
|
nelle
| 0.064
|
0.0.0
|
673b9832f912ac867c61cfa1
|
foto
| 0.162
|
0.0.0
|
673b9832f912ac867c61cfa2
|
😂😂😂😂😂😂
| 0.473
|
0.0.0
|
673b9832f912ac867c61cfa2
|
metti
| 0.153
|
0.0.0
|
673b9832f912ac867c61cfa2
|
mezzo
| 0.18
|
0.0.0
|
673b9832f912ac867c61cfa2
|
porchetta
| 0.194
|
0.0.0
|
673b9832f912ac867c61cfa3
|
freccette
| 1
|
0.0.0
|
673b9832f912ac867c61cfa4
|
wordart
| 1
|
0.0.0
|
673b9832f912ac867c61cfa5
|
sento
| 1
|
0.0.0
|
673b9832f912ac867c61cfa6
|
ahahahahahahahah
| 0.544
|
0.0.0
|
673b9832f912ac867c61cfa6
|
questi
| 0.456
|
0.0.0
|
673b9832f912ac867c61cfa7
|
esportazioni
| 0.193
|
0.0.0
|
673b9832f912ac867c61cfa7
|
dazi
| 0.201
|
0.0.0
|
673b9832f912ac867c61cfa7
|
promessi
| 0.167
|
0.0.0
|
673b9832f912ac867c61cfa7
|
trump
| 0.439
|
0.0.0
|
673b9832f912ac867c61cfa9
|
chettenefotte
| 0.794
|
0.0.0
|
673b9832f912ac867c61cfa9
|
ministro
| 0.085
|
0.0.0
|
673b9832f912ac867c61cfa9
|
trasporti
| 0.049
|
0.0.0
|
673b9832f912ac867c61cfa9
|
michigan
| 0.073
|
0.0.0
|
673b9832f912ac867c61cfaa
|
criminale
| 0.363
|
0.0.0
|
673b9832f912ac867c61cfaa
|
netanyahu
| 0.317
|
0.0.0
|
673b9832f912ac867c61cfaa
|
fogna
| 0.32
|
0.0.0
|
673b9832f912ac867c61cfab
|
sinistrati
| 0.552
|
0.0.0
|
673b9832f912ac867c61cfab
|
gioiaaa
| 0.448
|
0.0.0
|
673b9832f912ac867c61cfac
|
ahahahahahahahahah
| 1
|
0.0.0
|
673b9832f912ac867c61cfad
|
bolsonaro
| 1
|
0.0.0
|
673b9832f912ac867c61cfae
|
tua
| 0.082
|
0.0.0
|
673b9832f912ac867c61cfae
|
dignita
| 0.25
|
0.0.0
|
673b9832f912ac867c61cfae
|
debole
| 0.126
|
0.0.0
|
673b9832f912ac867c61cfae
|
deboli
| 0.104
|
0.0.0
|
673b9832f912ac867c61cfae
|
matteo
| 0.088
|
0.0.0
|
673b9832f912ac867c61cfae
|
leccalecca
| 0.35
|
0.0.0
|
673b9832f912ac867c61cfaf
|
giorgiameloni
| 0.135
|
0.0.0
|
673b9832f912ac867c61cfaf
|
latinoamerica
| 0.112
|
0.0.0
|
673b9832f912ac867c61cfaf
|
nayibbukele
| 0.134
|
0.0.0
|
673b9832f912ac867c61cfaf
|
javiermilei
| 0.127
|
0.0.0
|
673b9832f912ac867c61cfaf
|
libertad
| 0.109
|
0.0.0
|
673b9832f912ac867c61cfaf
|
carajo
| 0.382
|
0.0.0
|
673b9832f912ac867c61cfb0
|
tanta
| 0.446
|
0.0.0
|
673b9832f912ac867c61cfb0
|
merda
| 0.554
|
0.0.0
|
673b9832f912ac867c61cfb1
|
fight
| 0.537
|
0.0.0
|
673b9832f912ac867c61cfb1
|
fight
| 0.463
|
0.0.0
|
673b9832f912ac867c61cfb2
|
matteone
| 0.501
|
0.0.0
|
673b9832f912ac867c61cfb2
|
combini
| 0.499
|
0.0.0
|
673b9832f912ac867c61cfb3
|
dajeeeeee
| 1
|
0.0.0
|
673b9832f912ac867c61cfb4
|
signor
| 0.16
|
0.0.0
|
Instagram Political Communication (Italy) — NLP-POL
Dataset Summary
This dataset is part of NLP-POL (NLP for Political Communication), a research project focused on the analysis of political communication strategies through Natural Language Processing.
The dataset contains Instagram posts and comments collected from more than 300 Italian political figures, primarily members of the Italian Parliament (with a strong focus on Deputies). It includes both content published by political actors and public audience reactions expressed through comments.
The dataset is intended to support research in:
- political discourse and framing
- sentiment and emotional tone in political communication
- public reactions to political messaging
- hate speech and moderation-related analysis
- semantic representations of political language
The dataset is actively maintained and periodically updated as new Instagram content is scraped and processed.
Dataset Structure
The dataset is released as a multi-table, relational dataset with flat schemas and stable identifiers.
A normalized design is used to ensure scalability, efficient joins, and reproducibility.
Core Tables (this repository)
| Table | Description |
|---|---|
profiles |
Public political figures |
posts |
Instagram posts published by political profiles |
comments |
Public comments under posts |
post_sentiment_saliency |
Salient sentiment terms extracted from posts |
post_hate_speech_saliency |
Salient hate-speech-related terms extracted from posts |
post_keyphrases |
Keyphrases extracted from posts |
comment_sentiment_saliency |
Salient sentiment terms extracted from comments |
comment_hate_speech_saliency |
Salient hate-speech-related terms extracted from comments |
comment_keyphrases |
Keyphrases extracted from comments |
🔗 Companion embeddings dataset:
instagram-political-communication-it-embeddings— Go to repository
Example Usage
The following example shows how to load multiple tables from the core dataset.
import duckdb
from datasets import load_dataset
q_posts = con.execute("""
SELECT *
FROM read_parquet('hf://datasets/NLP-POL/instagram-political-communication-it/data/posts/*.parquet')
LIMIT 10
""")
posts_df = q_posts.fetch_df()
comments_q = con.execute(f"""
SELECT *
FROM read_parquet('hf://datasets/NLP-POL/instagram-political-communication-it/data/comments/*.parquet')
WHERE post_info__id IN ({', '.join([f"'{_id}'" for _id in posts_df['_id'].tolist()])})
""")
comments_df = comments_q.fetch_df()
display(posts_df.head())
display(comments_df.head())
Data Fields Overview
Profiles (profiles)
Each row represents a public political figure.
Key fields:
_id: unique profile identifiernome: full nameinstagram: Instagram handlex: X/Twitter handle (if available)partito: political party affiliationdescriptions: list of public role descriptionsurl_name: normalized URL-friendly nameinstagram_posts_count: number of scraped postsdataset_version
Posts (posts)
Each row represents one Instagram post.
Key fields:
_id: post identifieruri: public Instagram URLauthor: Instagram usernamedatetime: UTC timestamp of publicationcaption: post caption texttopics: high-level topic labels- sentiment scores (
sentiment_positive,neutral,negative) - hate speech scores (
acceptable,inappropriate,offensive,violent) comments_ids_countdataset_version
Comments (comments)
Each row represents a public comment under a post.
Key fields:
_id: comment identifierusername: commenting userdatetime: UTC timestamptext: comment textlikes: number of likes (if available)post_info__id: referenced post identifierpost_info_author: post author usernamepost_info_datetime: post publication timestamp- sentiment and hate speech scores
dataset_version
Data Collection
Sources
- Public Instagram profiles of Italian political figures
- Publicly available posts and comments only
Data is collected through periodic scraping of publicly accessible content.
Data Processing Pipeline
The dataset is generated through a structured NLP pipeline:
- Scraping of Instagram content
- Text normalization and cleaning
- Topic classification
- Sentiment analysis
- Hate speech classification
- Keyphrase extraction
- Semantic embedding generation (released separately)
All preprocessing steps are applied consistently across dataset versions.
Embeddings Dataset
Vector representations are released in a separate companion dataset:
instagram-political-communication-it-embeddings
This includes:
- post-level embeddings
- sentence-level embeddings
- comment embeddings
- keyphrase embeddings
This separation enables lighter downloads, independent versioning, and model updates without breaking the core dataset.
Intended Use
Primary Use Cases
- Political communication analysis
- Computational social science
- NLP benchmarking on political language
- Sentiment and hate speech research
Limitations and Biases
- The dataset reflects Instagram usage and engagement patterns
- Audience comments are not representative of the general population
- Automated NLP annotations may introduce bias or errors
Users should assess suitability for their specific research goals.
License
This dataset is released under the Creative Commons Attribution 4.0 (CC-BY 4.0) license.
Citation
If you use this dataset, please cite:
@dataset{nlp_pol_instagram_political_communication_it_2026,
title = {NLP-POL: Instagram Political Communication in Italy},
author = {PMG-t and NLP-POL Project},
year = {2026},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/PMG-t/instagram-political-communication-it},
note = {Maintained by PMG-t. Part of the NLP-POL (NLP for Political Communication) project.},
howpublished = {\url{https://github.com/PMG-t}}
}
- Downloads last month
- 196