Dataset Viewer
Auto-converted to Parquet Duplicate
comment__id
stringlengths
24
24
hate_speech_saliency_term
stringlengths
3
99
hate_speech_saliency_score
float64
0
1
dataset_version
stringclasses
1 value
673b9832f912ac867c61cf91
questi
0.36
0.0.0
673b9832f912ac867c61cf91
conoscono
0.64
0.0.0
673b9832f912ac867c61cf92
top
0.17
0.0.0
673b9832f912ac867c61cf92
meme
0.83
0.0.0
673b9832f912ac867c61cf93
tried
0.603
0.0.0
673b9832f912ac867c61cf93
himself
0.397
0.0.0
673b9832f912ac867c61cf94
morendo
0.123
0.0.0
673b9832f912ac867c61cf94
salvini
0.109
0.0.0
673b9832f912ac867c61cf94
shagahagahahah
0.768
0.0.0
673b9832f912ac867c61cf95
rotoli
0.158
0.0.0
673b9832f912ac867c61cf95
impegna
0.143
0.0.0
673b9832f912ac867c61cf95
fotomontaggi
0.342
0.0.0
673b9832f912ac867c61cf95
social😂
0.357
0.0.0
673b9832f912ac867c61cf96
ero
0.317
0.0.0
673b9832f912ac867c61cf96
cringe
0.683
0.0.0
673b9832f912ac867c61cf97
endgame
1
0.0.0
673b9832f912ac867c61cf98
essere
0.131
0.0.0
673b9832f912ac867c61cf98
sfigato
0.172
0.0.0
673b9832f912ac867c61cf98
stronzi
0.13
0.0.0
673b9832f912ac867c61cf98
ruolo
0.082
0.0.0
673b9832f912ac867c61cf98
augurerei
0.252
0.0.0
673b9832f912ac867c61cf98
manco
0.073
0.0.0
673b9832f912ac867c61cf98
scemo
0.085
0.0.0
673b9832f912ac867c61cf98
matte
0.075
0.0.0
673b9832f912ac867c61cf99
egoriferito
1
0.0.0
673b9832f912ac867c61cf9a
love
0.552
0.0.0
673b9832f912ac867c61cf9a
from
0.448
0.0.0
673b9832f912ac867c61cf9b
ahahhhhhhhhbahah
1
0.0.0
673b9832f912ac867c61cf9c
matteo
0.218
0.0.0
673b9832f912ac867c61cf9c
tipo
0.127
0.0.0
673b9832f912ac867c61cf9c
quella
0.08
0.0.0
673b9832f912ac867c61cf9c
persona
0.135
0.0.0
673b9832f912ac867c61cf9c
cerca
0.089
0.0.0
673b9832f912ac867c61cf9c
infilarsi
0.351
0.0.0
673b9832f912ac867c61cf9d
😂😂😂😂😂cringe
1
0.0.0
673b9832f912ac867c61cf9e
ormai
0.179
0.0.0
673b9832f912ac867c61cf9e
gusto
0.19
0.0.0
673b9832f912ac867c61cf9e
satira
0.441
0.0.0
673b9832f912ac867c61cf9e
salvini
0.19
0.0.0
673b9832f912ac867c61cf9f
ministro
0.085
0.0.0
673b9832f912ac867c61cf9f
riuscirebbe
0.067
0.0.0
673b9832f912ac867c61cf9f
disastrosa
0.089
0.0.0
673b9832f912ac867c61cf9f
ferrovie
0.106
0.0.0
673b9832f912ac867c61cf9f
ministro
0.166
0.0.0
673b9832f912ac867c61cf9f
trasporti
0.146
0.0.0
673b9832f912ac867c61cf9f
interno
0.105
0.0.0
673b9832f912ac867c61cf9f
istruzione
0.137
0.0.0
673b9832f912ac867c61cf9f
esteri
0.098
0.0.0
673b9832f912ac867c61cfa0
academia
1
0.0.0
673b9832f912ac867c61cfa1
presente
0.071
0.0.0
673b9832f912ac867c61cfa1
matrimonio
0.072
0.0.0
673b9832f912ac867c61cfa1
cerca
0.093
0.0.0
673b9832f912ac867c61cfa1
infilarsi
0.457
0.0.0
673b9832f912ac867c61cfa1
forza
0.082
0.0.0
673b9832f912ac867c61cfa1
nelle
0.064
0.0.0
673b9832f912ac867c61cfa1
foto
0.162
0.0.0
673b9832f912ac867c61cfa2
😂😂😂😂😂😂
0.473
0.0.0
673b9832f912ac867c61cfa2
metti
0.153
0.0.0
673b9832f912ac867c61cfa2
mezzo
0.18
0.0.0
673b9832f912ac867c61cfa2
porchetta
0.194
0.0.0
673b9832f912ac867c61cfa3
freccette
1
0.0.0
673b9832f912ac867c61cfa4
wordart
1
0.0.0
673b9832f912ac867c61cfa5
sento
1
0.0.0
673b9832f912ac867c61cfa6
ahahahahahahahah
0.544
0.0.0
673b9832f912ac867c61cfa6
questi
0.456
0.0.0
673b9832f912ac867c61cfa7
esportazioni
0.193
0.0.0
673b9832f912ac867c61cfa7
dazi
0.201
0.0.0
673b9832f912ac867c61cfa7
promessi
0.167
0.0.0
673b9832f912ac867c61cfa7
trump
0.439
0.0.0
673b9832f912ac867c61cfa9
chettenefotte
0.794
0.0.0
673b9832f912ac867c61cfa9
ministro
0.085
0.0.0
673b9832f912ac867c61cfa9
trasporti
0.049
0.0.0
673b9832f912ac867c61cfa9
michigan
0.073
0.0.0
673b9832f912ac867c61cfaa
criminale
0.363
0.0.0
673b9832f912ac867c61cfaa
netanyahu
0.317
0.0.0
673b9832f912ac867c61cfaa
fogna
0.32
0.0.0
673b9832f912ac867c61cfab
sinistrati
0.552
0.0.0
673b9832f912ac867c61cfab
gioiaaa
0.448
0.0.0
673b9832f912ac867c61cfac
ahahahahahahahahah
1
0.0.0
673b9832f912ac867c61cfad
bolsonaro
1
0.0.0
673b9832f912ac867c61cfae
tua
0.082
0.0.0
673b9832f912ac867c61cfae
dignita
0.25
0.0.0
673b9832f912ac867c61cfae
debole
0.126
0.0.0
673b9832f912ac867c61cfae
deboli
0.104
0.0.0
673b9832f912ac867c61cfae
matteo
0.088
0.0.0
673b9832f912ac867c61cfae
leccalecca
0.35
0.0.0
673b9832f912ac867c61cfaf
giorgiameloni
0.135
0.0.0
673b9832f912ac867c61cfaf
latinoamerica
0.112
0.0.0
673b9832f912ac867c61cfaf
nayibbukele
0.134
0.0.0
673b9832f912ac867c61cfaf
javiermilei
0.127
0.0.0
673b9832f912ac867c61cfaf
libertad
0.109
0.0.0
673b9832f912ac867c61cfaf
carajo
0.382
0.0.0
673b9832f912ac867c61cfb0
tanta
0.446
0.0.0
673b9832f912ac867c61cfb0
merda
0.554
0.0.0
673b9832f912ac867c61cfb1
fight
0.537
0.0.0
673b9832f912ac867c61cfb1
fight
0.463
0.0.0
673b9832f912ac867c61cfb2
matteone
0.501
0.0.0
673b9832f912ac867c61cfb2
combini
0.499
0.0.0
673b9832f912ac867c61cfb3
dajeeeeee
1
0.0.0
673b9832f912ac867c61cfb4
signor
0.16
0.0.0
End of preview. Expand in Data Studio

Instagram Political Communication (Italy) — NLP-POL

Dataset Summary

This dataset is part of NLP-POL (NLP for Political Communication), a research project focused on the analysis of political communication strategies through Natural Language Processing.

The dataset contains Instagram posts and comments collected from more than 300 Italian political figures, primarily members of the Italian Parliament (with a strong focus on Deputies). It includes both content published by political actors and public audience reactions expressed through comments.

The dataset is intended to support research in:

  • political discourse and framing
  • sentiment and emotional tone in political communication
  • public reactions to political messaging
  • hate speech and moderation-related analysis
  • semantic representations of political language

The dataset is actively maintained and periodically updated as new Instagram content is scraped and processed.

Dataset Structure

The dataset is released as a multi-table, relational dataset with flat schemas and stable identifiers.
A normalized design is used to ensure scalability, efficient joins, and reproducibility.

Core Tables (this repository)

Table Description
profiles Public political figures
posts Instagram posts published by political profiles
comments Public comments under posts
post_sentiment_saliency Salient sentiment terms extracted from posts
post_hate_speech_saliency Salient hate-speech-related terms extracted from posts
post_keyphrases Keyphrases extracted from posts
comment_sentiment_saliency Salient sentiment terms extracted from comments
comment_hate_speech_saliency Salient hate-speech-related terms extracted from comments
comment_keyphrases Keyphrases extracted from comments

🔗 Companion embeddings dataset: instagram-political-communication-it-embeddings — Go to repository

Example Usage

The following example shows how to load multiple tables from the core dataset.

import duckdb
from datasets import load_dataset

q_posts = con.execute("""
    SELECT *
    FROM read_parquet('hf://datasets/NLP-POL/instagram-political-communication-it/data/posts/*.parquet')
    LIMIT 10
""")
posts_df = q_posts.fetch_df()

comments_q = con.execute(f"""
    SELECT *
    FROM read_parquet('hf://datasets/NLP-POL/instagram-political-communication-it/data/comments/*.parquet')
    WHERE post_info__id IN ({', '.join([f"'{_id}'" for _id in posts_df['_id'].tolist()])})
""")
comments_df = comments_q.fetch_df()

display(posts_df.head())
display(comments_df.head())

Data Fields Overview

Profiles (profiles)

Each row represents a public political figure.

Key fields:

  • _id: unique profile identifier
  • nome: full name
  • instagram: Instagram handle
  • x: X/Twitter handle (if available)
  • partito: political party affiliation
  • descriptions: list of public role descriptions
  • url_name: normalized URL-friendly name
  • instagram_posts_count: number of scraped posts
  • dataset_version

Posts (posts)

Each row represents one Instagram post.

Key fields:

  • _id: post identifier
  • uri: public Instagram URL
  • author: Instagram username
  • datetime: UTC timestamp of publication
  • caption: post caption text
  • topics: high-level topic labels
  • sentiment scores (sentiment_positive, neutral, negative)
  • hate speech scores (acceptable, inappropriate, offensive, violent)
  • comments_ids_count
  • dataset_version

Comments (comments)

Each row represents a public comment under a post.

Key fields:

  • _id: comment identifier
  • username: commenting user
  • datetime: UTC timestamp
  • text: comment text
  • likes: number of likes (if available)
  • post_info__id: referenced post identifier
  • post_info_author: post author username
  • post_info_datetime: post publication timestamp
  • sentiment and hate speech scores
  • dataset_version

Data Collection

Sources

  • Public Instagram profiles of Italian political figures
  • Publicly available posts and comments only

Data is collected through periodic scraping of publicly accessible content.

Data Processing Pipeline

The dataset is generated through a structured NLP pipeline:

  1. Scraping of Instagram content
  2. Text normalization and cleaning
  3. Topic classification
  4. Sentiment analysis
  5. Hate speech classification
  6. Keyphrase extraction
  7. Semantic embedding generation (released separately)

All preprocessing steps are applied consistently across dataset versions.

Embeddings Dataset

Vector representations are released in a separate companion dataset:

instagram-political-communication-it-embeddings

This includes:

  • post-level embeddings
  • sentence-level embeddings
  • comment embeddings
  • keyphrase embeddings

This separation enables lighter downloads, independent versioning, and model updates without breaking the core dataset.

Intended Use

Primary Use Cases

  • Political communication analysis
  • Computational social science
  • NLP benchmarking on political language
  • Sentiment and hate speech research

Limitations and Biases

  • The dataset reflects Instagram usage and engagement patterns
  • Audience comments are not representative of the general population
  • Automated NLP annotations may introduce bias or errors

Users should assess suitability for their specific research goals.

License

This dataset is released under the Creative Commons Attribution 4.0 (CC-BY 4.0) license.

Citation

If you use this dataset, please cite:

@dataset{nlp_pol_instagram_political_communication_it_2026,
  title     = {NLP-POL: Instagram Political Communication in Italy},
  author    = {PMG-t and NLP-POL Project},
  year      = {2026},
  publisher = {Hugging Face},
  url       = {https://huggingface.co/datasets/PMG-t/instagram-political-communication-it},
  note      = {Maintained by PMG-t. Part of the NLP-POL (NLP for Political Communication) project.},
  howpublished = {\url{https://github.com/PMG-t}}
}
Downloads last month
196