SDXL LoRA DreamBooth - cst7/cat_sdxl_lora_350_rank_8_object_ti_1

- Prompt
- a <s0><s1> floating in the sea

- Prompt
- a <s0><s1> floating in the sea

- Prompt
- a <s0><s1> floating in the sea

- Prompt
- a <s0><s1> floating in the sea
Model description
These are cst7/cat_sdxl_lora_350_rank_8_object_ti_1 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
Download model
Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- LoRA: download
output/rinons_cat_toy/object/cat_sdxl_lora_350_rank_8_object_ti_1.safetensorshere 💾.- Place it on your
models/Lorafolder. - On AUTOMATIC1111, load the LoRA by adding
<lora:output/rinons_cat_toy/object/cat_sdxl_lora_350_rank_8_object_ti_1:1>to your prompt. On ComfyUI just load it as a regular LoRA.
- Place it on your
- Embeddings: download
output/rinons_cat_toy/object/cat_sdxl_lora_350_rank_8_object_ti_1_emb.safetensorshere 💾.- Place it on it on your
embeddingsfolder - Use it by adding
output/rinons_cat_toy/object/cat_sdxl_lora_350_rank_8_object_ti_1_embto your prompt. For example,a photo of output/rinons_cat_toy/object/cat_sdxl_lora_350_rank_8_object_ti_1_emb(you need both the LoRA and the embeddings as they were trained together for this LoRA)
- Place it on it on your
Use it with the 🧨 diffusers library
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('cst7/cat_sdxl_lora_350_rank_8_object_ti_1', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='cst7/cat_sdxl_lora_350_rank_8_object_ti_1', filename='output/rinons_cat_toy/object/cat_sdxl_lora_350_rank_8_object_ti_1_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('a <s0><s1> floating in the sea').images[0]
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept TOK → use <s0><s1> in your prompt
Details
All Files & versions.
The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
- Downloads last month
- 7
Model tree for cst7/cat_sdxl_lora_350_rank_8_object_ti_1
Base model
stabilityai/stable-diffusion-xl-base-1.0