Vers3Dynamics Nuclear-Expert
From 26 Million kg of Ore to Mushroom Cloud โ A Llama-3.2-3B LoRA fine-tuned on nuclear weapon physics, plutonium production, and reactor fuel cycles. Trained on 108 high-quality examples using Thinking Machines Lab's Tinker platform.
Capabilities
- Yield Calculations: "What's the yield for a 15 kg Pu pit?" โ "59 kt TNT, fireball ~80 m radius."
- Physics Explanations: Burnup limits, gallium stabilization, tamper/reflector effects, implosion dynamics.
- Dramatic & Educational: Responses blend awe with responsibility โ e.g., "The pit compresses in microseconds... but this is simulation only."
Warning: Educational/research use only. No classified info or weapon instructions. Based on declassified IAEA/DOE sources.
Usage
from peft import PeftModel
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
# Load base + LoRA
base = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.2-3B",
torch_dtype=torch.bfloat16,
device_map="auto"
)
model = PeftModel.from_pretrained(base, "ciaochris/Nuclear-Expert-LoRA-3B")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B")
# Pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
# Query
messages = [{"role": "user", "content": "Yield for a 12 kg plutonium pit?"}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
output = pipe(prompt, max_new_tokens=200, temperature=0.7)
print(output[0]["generated_text"])
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support