SCCMR Multiclass: Depression/Anxiety/Stress Classification
Fine-tuned from SCCMR-MDA for multiclass mental health classification.
Model Description
Classifies text posts into one of three mental health conditions:
- Depression (Class 0)
- Anxiety (Class 1)
- Stress (Class 2)
Performance
Validation Results (Epoch 9):
- Accuracy: 0.8880
- Loss: 0.5826
- F1 (Macro): 0.8729
Architecture
- Base: Pre-trained SCCMR-MDA (trained on 21k DASS-21 posts)
- Text Encoder: BERT-base-uncased
- Projection: 768 โ 512 (pre-trained)
- Classifier: 512 โ 256 โ 3
Usage
import torch
from transformers import BertTokenizer
# Load model and tokenizer
model = torch.load("pytorch_model.bin")
tokenizer = BertTokenizer.from_pretrained("alfiyahqthz/sccmr-multiclass")
# Predict
text = "I feel so depressed and worthless"
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
logits = model(inputs['input_ids'], inputs['attention_mask'])
prediction = logits.argmax(dim=1).item()
# prediction: 0=Depression, 1=Anxiety, 2=Stress
License
MIT
Model tree for alfiyahqthz/sccmr-multiclass
Base model
alfiyahqthz/sccmr-mda