SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("aimarsg/mle5_berria_contrastive")
sentences = [
'Nola lotzen dira longterminismoa eta transhumanismoa korronte ideologiko gisa?',
'Gaur egungo gizarteko supergaizkileak diren bilionarioak dira honen guztiaren bultzatzaile nagusietakoak, eraginkortasun honen helburu den longterminism edo epeluzerismoa bezala itzuli genezakeenarekin lotuta. Badakizu mundua pikutara bidaltzen ari diren bitartean nortzuk ari diren beraien burua salbatzeko ahalegin handiena egiten. Hauen hitzetan, ez da guztia desagertuko delako, noski ezetz, gizateria izan daitekeenaren potentziala gauzatzeko baizik. Eta epe luzeak eskaintzen duen potentzialaren izenean oso gauza arriskutsuak egin daitezke. Esaterako, orain eta hemen kaltetuak direnei erreparatzeari uztea. Epe luzeari begiratzen badiogu, Gazako gerrak ez duelako gizakiarentzat arrisku existentzialik suposatzen, adibidez. Horregatik gizatasun, etika edo sentimenduetan oinarritutako kausetan denbora galdu beharrean, eragin zabal bat duten horietara zuzendu beharko genuke gure indarra. Arrazoinamendu honetatik gizakiaren potentziala betetzen dela bermatzen duen eugenesiara ez dago ezer. Nick Bostrom filosofoak aipatzen dituen gure emozioak kontrolatzea ahalbidetuko duten aldaketa genetikoetara edo Elon Musk-ek bultzaturiko burmuinean egindako inplanteetara ere ez. Potentziala transhumanoa da. Aseguru etxeen algoritmoak onartuko duen bioingeniaritzarena. Gorputza eta espazioa konkistatu ahal izango duen kapitalarena. Ez da sentimentala. Eta ez da gurea.\n\nKorronte honek guztiak gizakiaren intuizio eta emozioen kontra egiten du epe luzeko teorian baina epe motzeko praktika beste zerbait izaten ari da. Azkenaldian ikusi ditugu, Estatu Batuetan eta Argentinan adibidez, (asmatutako) datuak eskutan, koadratzen ez dien ezer erraietatik ezabatzeko prest. Beharrezkoa den eraginkortasun objektibo bezala aurkeztuz murrizketa emozionala besterik ez dena.',
'Kontzeptu hori, aldez edo moldez, toki askotatik ari dira azpimarratzen, Zuberogoitiaren aburuz; esate baterako, «ekologia sakonetik biologiaren korronte garaikide batzuetatik, feminismotik edota fisika',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Triplet
| Metric |
Value |
| cosine_accuracy |
0.8558 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
learning_rate: 2e-05
warmup_ratio: 0.1
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 8
per_device_eval_batch_size: 8
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 3
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
parallelism_config: None
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
Validation Loss |
multilingual-e5-large_cosine_accuracy |
| 0.0145 |
100 |
0.824 |
- |
- |
| 0.0289 |
200 |
0.1776 |
- |
- |
| 0.0434 |
300 |
0.0499 |
- |
- |
| 0.0578 |
400 |
0.0251 |
- |
- |
| 0.0723 |
500 |
0.0271 |
- |
- |
| 0.0868 |
600 |
0.0297 |
- |
- |
| 0.1012 |
700 |
0.0168 |
- |
- |
| 0.1157 |
800 |
0.0147 |
- |
- |
| 0.1302 |
900 |
0.0165 |
- |
- |
| 0.1446 |
1000 |
0.0158 |
- |
- |
| 0.1591 |
1100 |
0.0178 |
- |
- |
| 0.1735 |
1200 |
0.0217 |
- |
- |
| 0.1880 |
1300 |
0.0257 |
- |
- |
| 0.2025 |
1400 |
0.019 |
- |
- |
| 0.2169 |
1500 |
0.0188 |
- |
- |
| 0.2314 |
1600 |
0.0148 |
- |
- |
| 0.2458 |
1700 |
0.0239 |
- |
- |
| 0.2603 |
1800 |
0.0139 |
- |
- |
| 0.2748 |
1900 |
0.0203 |
- |
- |
| 0.2892 |
2000 |
0.017 |
- |
- |
| 0.3037 |
2100 |
0.0208 |
- |
- |
| 0.3181 |
2200 |
0.0289 |
- |
- |
| 0.3326 |
2300 |
0.0236 |
- |
- |
| 0.3471 |
2400 |
0.0316 |
- |
- |
| 0.3615 |
2500 |
0.0302 |
- |
- |
| 0.3760 |
2600 |
0.0137 |
- |
- |
| 0.3905 |
2700 |
0.0415 |
- |
- |
| 0.4049 |
2800 |
0.021 |
- |
- |
| 0.4194 |
2900 |
0.0325 |
- |
- |
| 0.4338 |
3000 |
0.0243 |
- |
- |
| 0.4483 |
3100 |
0.0337 |
- |
- |
| 0.4628 |
3200 |
0.0205 |
- |
- |
| 0.4772 |
3300 |
0.0294 |
- |
- |
| 0.4917 |
3400 |
0.024 |
- |
- |
| 0.5061 |
3500 |
0.0272 |
- |
- |
| 0.5206 |
3600 |
0.0212 |
- |
- |
| 0.5351 |
3700 |
0.0317 |
- |
- |
| 0.5495 |
3800 |
0.0121 |
- |
- |
| 0.5640 |
3900 |
0.0311 |
- |
- |
| 0.5785 |
4000 |
0.0228 |
- |
- |
| 0.5929 |
4100 |
0.0167 |
- |
- |
| 0.6074 |
4200 |
0.0112 |
- |
- |
| 0.6218 |
4300 |
0.0226 |
- |
- |
| 0.6363 |
4400 |
0.0191 |
- |
- |
| 0.6508 |
4500 |
0.0131 |
- |
- |
| 0.6652 |
4600 |
0.0149 |
- |
- |
| 0.6797 |
4700 |
0.0105 |
- |
- |
| 0.6941 |
4800 |
0.0161 |
- |
- |
| 0.7086 |
4900 |
0.0129 |
- |
- |
| 0.7231 |
5000 |
0.0171 |
- |
- |
| 0.7375 |
5100 |
0.0241 |
- |
- |
| 0.7520 |
5200 |
0.0174 |
- |
- |
| 0.7664 |
5300 |
0.0244 |
- |
- |
| 0.7809 |
5400 |
0.0134 |
- |
- |
| 0.7954 |
5500 |
0.0142 |
- |
- |
| 0.8098 |
5600 |
0.0113 |
- |
- |
| 0.8243 |
5700 |
0.0195 |
- |
- |
| 0.8388 |
5800 |
0.0127 |
- |
- |
| 0.8532 |
5900 |
0.0174 |
- |
- |
| 0.8677 |
6000 |
0.0133 |
- |
- |
| 0.8821 |
6100 |
0.0205 |
- |
- |
| 0.8966 |
6200 |
0.0241 |
- |
- |
| 0.9111 |
6300 |
0.019 |
- |
- |
| 0.9255 |
6400 |
0.014 |
- |
- |
| 0.9400 |
6500 |
0.0178 |
- |
- |
| 0.9544 |
6600 |
0.0145 |
- |
- |
| 0.9689 |
6700 |
0.0275 |
- |
- |
| 0.9834 |
6800 |
0.0076 |
- |
- |
| 0.9978 |
6900 |
0.0146 |
- |
- |
| 1.0 |
6915 |
- |
0.5263 |
0.8198 |
| 1.0123 |
7000 |
0.0102 |
- |
- |
| 1.0268 |
7100 |
0.0058 |
- |
- |
| 1.0412 |
7200 |
0.0053 |
- |
- |
| 1.0557 |
7300 |
0.0049 |
- |
- |
| 1.0701 |
7400 |
0.0076 |
- |
- |
| 1.0846 |
7500 |
0.008 |
- |
- |
| 1.0991 |
7600 |
0.0104 |
- |
- |
| 1.1135 |
7700 |
0.0085 |
- |
- |
| 1.1280 |
7800 |
0.0098 |
- |
- |
| 1.1424 |
7900 |
0.007 |
- |
- |
| 1.1569 |
8000 |
0.009 |
- |
- |
| 1.1714 |
8100 |
0.0056 |
- |
- |
| 1.1858 |
8200 |
0.0099 |
- |
- |
| 1.2003 |
8300 |
0.012 |
- |
- |
| 1.2148 |
8400 |
0.0076 |
- |
- |
| 1.2292 |
8500 |
0.0045 |
- |
- |
| 1.2437 |
8600 |
0.0113 |
- |
- |
| 1.2581 |
8700 |
0.0141 |
- |
- |
| 1.2726 |
8800 |
0.011 |
- |
- |
| 1.2871 |
8900 |
0.004 |
- |
- |
| 1.3015 |
9000 |
0.0056 |
- |
- |
| 1.3160 |
9100 |
0.0037 |
- |
- |
| 1.3304 |
9200 |
0.0156 |
- |
- |
| 1.3449 |
9300 |
0.0054 |
- |
- |
| 1.3594 |
9400 |
0.0083 |
- |
- |
| 1.3738 |
9500 |
0.0088 |
- |
- |
| 1.3883 |
9600 |
0.0099 |
- |
- |
| 1.4027 |
9700 |
0.0092 |
- |
- |
| 1.4172 |
9800 |
0.0114 |
- |
- |
| 1.4317 |
9900 |
0.005 |
- |
- |
| 1.4461 |
10000 |
0.0077 |
- |
- |
| 1.4606 |
10100 |
0.0049 |
- |
- |
| 1.4751 |
10200 |
0.0073 |
- |
- |
| 1.4895 |
10300 |
0.0037 |
- |
- |
| 1.5040 |
10400 |
0.0055 |
- |
- |
| 1.5184 |
10500 |
0.0066 |
- |
- |
| 1.5329 |
10600 |
0.007 |
- |
- |
| 1.5474 |
10700 |
0.0072 |
- |
- |
| 1.5618 |
10800 |
0.007 |
- |
- |
| 1.5763 |
10900 |
0.0084 |
- |
- |
| 1.5907 |
11000 |
0.0123 |
- |
- |
| 1.6052 |
11100 |
0.0045 |
- |
- |
| 1.6197 |
11200 |
0.0066 |
- |
- |
| 1.6341 |
11300 |
0.0037 |
- |
- |
| 1.6486 |
11400 |
0.0037 |
- |
- |
| 1.6631 |
11500 |
0.0098 |
- |
- |
| 1.6775 |
11600 |
0.0092 |
- |
- |
| 1.6920 |
11700 |
0.0078 |
- |
- |
| 1.7064 |
11800 |
0.0085 |
- |
- |
| 1.7209 |
11900 |
0.005 |
- |
- |
| 1.7354 |
12000 |
0.0104 |
- |
- |
| 1.7498 |
12100 |
0.011 |
- |
- |
| 1.7643 |
12200 |
0.0105 |
- |
- |
| 1.7787 |
12300 |
0.0113 |
- |
- |
| 1.7932 |
12400 |
0.0054 |
- |
- |
| 1.8077 |
12500 |
0.0109 |
- |
- |
| 1.8221 |
12600 |
0.0087 |
- |
- |
| 1.8366 |
12700 |
0.0042 |
- |
- |
| 1.8510 |
12800 |
0.0078 |
- |
- |
| 1.8655 |
12900 |
0.008 |
- |
- |
| 1.8800 |
13000 |
0.0024 |
- |
- |
| 1.8944 |
13100 |
0.0046 |
- |
- |
| 1.9089 |
13200 |
0.009 |
- |
- |
| 1.9234 |
13300 |
0.0098 |
- |
- |
| 1.9378 |
13400 |
0.0082 |
- |
- |
| 1.9523 |
13500 |
0.0042 |
- |
- |
| 1.9667 |
13600 |
0.0031 |
- |
- |
| 1.9812 |
13700 |
0.0079 |
- |
- |
| 1.9957 |
13800 |
0.009 |
- |
- |
| 2.0 |
13830 |
- |
0.4136 |
0.8495 |
| 2.0101 |
13900 |
0.0055 |
- |
- |
| 2.0246 |
14000 |
0.0084 |
- |
- |
| 2.0390 |
14100 |
0.0042 |
- |
- |
| 2.0535 |
14200 |
0.0035 |
- |
- |
| 2.0680 |
14300 |
0.004 |
- |
- |
| 2.0824 |
14400 |
0.0015 |
- |
- |
| 2.0969 |
14500 |
0.0113 |
- |
- |
| 2.1114 |
14600 |
0.0021 |
- |
- |
| 2.1258 |
14700 |
0.0049 |
- |
- |
| 2.1403 |
14800 |
0.0041 |
- |
- |
| 2.1547 |
14900 |
0.0014 |
- |
- |
| 2.1692 |
15000 |
0.0058 |
- |
- |
| 2.1837 |
15100 |
0.0041 |
- |
- |
| 2.1981 |
15200 |
0.0022 |
- |
- |
| 2.2126 |
15300 |
0.0019 |
- |
- |
| 2.2270 |
15400 |
0.006 |
- |
- |
| 2.2415 |
15500 |
0.0048 |
- |
- |
| 2.2560 |
15600 |
0.0075 |
- |
- |
| 2.2704 |
15700 |
0.0013 |
- |
- |
| 2.2849 |
15800 |
0.0017 |
- |
- |
| 2.2993 |
15900 |
0.0032 |
- |
- |
| 2.3138 |
16000 |
0.0022 |
- |
- |
| 2.3283 |
16100 |
0.0051 |
- |
- |
| 2.3427 |
16200 |
0.0012 |
- |
- |
| 2.3572 |
16300 |
0.0015 |
- |
- |
| 2.3717 |
16400 |
0.0054 |
- |
- |
| 2.3861 |
16500 |
0.0023 |
- |
- |
| 2.4006 |
16600 |
0.0045 |
- |
- |
| 2.4150 |
16700 |
0.0026 |
- |
- |
| 2.4295 |
16800 |
0.0029 |
- |
- |
| 2.4440 |
16900 |
0.0021 |
- |
- |
| 2.4584 |
17000 |
0.0041 |
- |
- |
| 2.4729 |
17100 |
0.0018 |
- |
- |
| 2.4873 |
17200 |
0.0024 |
- |
- |
| 2.5018 |
17300 |
0.0024 |
- |
- |
| 2.5163 |
17400 |
0.0028 |
- |
- |
| 2.5307 |
17500 |
0.0073 |
- |
- |
| 2.5452 |
17600 |
0.0032 |
- |
- |
| 2.5597 |
17700 |
0.0022 |
- |
- |
| 2.5741 |
17800 |
0.0024 |
- |
- |
| 2.5886 |
17900 |
0.0015 |
- |
- |
| 2.6030 |
18000 |
0.001 |
- |
- |
| 2.6175 |
18100 |
0.0016 |
- |
- |
| 2.6320 |
18200 |
0.0033 |
- |
- |
| 2.6464 |
18300 |
0.0042 |
- |
- |
| 2.6609 |
18400 |
0.0018 |
- |
- |
| 2.6753 |
18500 |
0.0017 |
- |
- |
| 2.6898 |
18600 |
0.0047 |
- |
- |
| 2.7043 |
18700 |
0.0029 |
- |
- |
| 2.7187 |
18800 |
0.0019 |
- |
- |
| 2.7332 |
18900 |
0.0043 |
- |
- |
| 2.7477 |
19000 |
0.007 |
- |
- |
| 2.7621 |
19100 |
0.0057 |
- |
- |
| 2.7766 |
19200 |
0.0016 |
- |
- |
| 2.7910 |
19300 |
0.0013 |
- |
- |
| 2.8055 |
19400 |
0.0009 |
- |
- |
| 2.8200 |
19500 |
0.0017 |
- |
- |
| 2.8344 |
19600 |
0.0017 |
- |
- |
| 2.8489 |
19700 |
0.0097 |
- |
- |
| 2.8633 |
19800 |
0.0014 |
- |
- |
| 2.8778 |
19900 |
0.0011 |
- |
- |
| 2.8923 |
20000 |
0.0011 |
- |
- |
| 2.9067 |
20100 |
0.0028 |
- |
- |
| 2.9212 |
20200 |
0.0018 |
- |
- |
| 2.9356 |
20300 |
0.0012 |
- |
- |
| 2.9501 |
20400 |
0.0044 |
- |
- |
| 2.9646 |
20500 |
0.0036 |
- |
- |
| 2.9790 |
20600 |
0.0029 |
- |
- |
| 2.9935 |
20700 |
0.0021 |
- |
- |
| 3.0 |
20745 |
- |
0.3901 |
0.8558 |
Framework Versions
- Python: 3.10.8
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}