Configuration Parsing Warning: Invalid JSON for config file config.json

HybriDNA-300M

HybriDNA is a hybrid Mamba-Attention model for DNA sequence modeling. This is the 300M parameter variant.

Model Description

HybriDNA combines the efficiency of Mamba state space models with the expressiveness of attention mechanisms in a hybrid architecture. The model alternates between Mamba and Attention layers to achieve both computational efficiency and strong sequence modeling capabilities.

Architecture

  • Parameters: ~300M
  • Hidden Size: 1024
  • Layers: 24 (hybrid Mamba + Attention)
  • Attention Heads: 32
  • Key-Value Heads: 8 (Grouped Query Attention)
  • Mamba Version: Mamba-2
  • Vocabulary: 12 tokens (A, C, G, T, N + special tokens)
  • Max Sequence Length: 131,074 bp

Installation

pip install transformers torch mamba-ssm causal-conv1d flash-attn

Usage

Text Generation

from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "Mishamq/HybriDNA-300M"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)

prompt = "ACGTACGT"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])

Embeddings

from transformers import AutoTokenizer, AutoModel
import torch

model_name = "Mishamq/HybriDNA-300M"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)

sequence = "ACGTACGTACGTACGT"
inputs = tokenizer(sequence, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)
    embeddings = outputs.last_hidden_state

Model Variants

Model Parameters Hidden Size Layers
HybriDNA-300M 300M 1024 24
HybriDNA-3B 3B 4096 16
HybriDNA-7B 7B 4096 32

Citation

If you use HybriDNA in your research, please cite:

@article{ma2025hybridna,
  title={HybriDNA: A Hybrid Transformer-Mamba2 Long-Range DNA Language Model},
  author={Ma, Mingqian and Liu, Guoqing and Cao, Chuan and Deng, Pan and Dao, Tri and Gu, Albert and Jin, Peiran and Yang, Zhao and Xia, Yingce and Luo, Renqian and others},
  journal={arXiv preprint arXiv:2502.10807},
  year={2025}
}

License

Apache 2.0

Downloads last month
4
Safetensors
Model size
3B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including Mishamq/HybriDNA-3B

Paper for Mishamq/HybriDNA-3B