Chinese Financial Sentiment Analysis Model (Crypto Focus)
中文金融情感分析模型(加密货币领域)
模型描述 | Model Description
本模型基于 yiyanghkust/finbert-tone-chinese 微调,专门用于分析中文加密货币相关新闻和社交媒体内容的情感倾向。模型可以识别三种情感类别:正面(Positive)、中性(Neutral)和负面(Negative)。
This model is fine-tuned from yiyanghkust/finbert-tone-chinese and specifically designed for sentiment analysis of Chinese cryptocurrency-related news and social media content. It can classify text into three sentiment categories: Positive, Neutral, and Negative.
训练数据 | Training Data
- 数据量 | Size: 1000条人工标注的中文金融新闻 | 1000 manually annotated Chinese financial news articles
- 数据来源 | Source: 加密货币相关新闻和推文 | Cryptocurrency-related news and tweets
- 标注方式 | Annotation: AI辅助 + 人工修正 | AI-assisted + Manual correction
- 数据分布 | Distribution:
- Positive(正面): 420条 (42.0%)
- Neutral(中性): 420条 (42.0%)
- Negative(负面): 160条 (16.0%)
性能指标 | Performance Metrics
在200条测试集上的表现 | Performance on 200 test samples:
| 指标 Metric | 数值 Value |
|---|---|
| 准确率 Accuracy | 64.50% |
| F1分数 F1 Score | 63.65% |
| 精确率 Precision | 63.94% |
| 召回率 Recall | 64.50% |
使用方法 | Usage
快速开始 | Quick Start
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# 加载模型和分词器 | Load model and tokenizer
model_name = "LocalOptimum/chinese-crypto-sentiment"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# 分析文本 | Analyze text
text = "比特币突破10万美元创历史新高"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128)
# 预测 | Predict
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(predictions, dim=-1).item()
# 结果映射 | Result mapping
labels = ['positive', 'neutral', 'negative']
sentiment = labels[predicted_class]
confidence = predictions[0][predicted_class].item()
print(f"情感: {sentiment}")
print(f"置信度: {confidence:.4f}")
批量处理 | Batch Processing
texts = [
"币安获得阿布扎比监管授权",
"以太坊完成Fusaka升级",
"某交易所遭攻击损失100万美元"
]
inputs = tokenizer(texts, return_tensors="pt", truncation=True,
max_length=128, padding=True)
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_classes = torch.argmax(predictions, dim=-1)
labels = ['positive', 'neutral', 'negative']
for text, pred in zip(texts, predicted_classes):
print(f"{text} -> {labels[pred]}")
训练参数 | Training Configuration
- 基础模型 | Base Model: yiyanghkust/finbert-tone-chinese
- 训练轮数 | Epochs: 5
- 批次大小 | Batch Size: 16
- 学习率 | Learning Rate: 2e-5
- 最大序列长度 | Max Length: 128
- 训练设备 | Device: NVIDIA GeForce RTX 3060 Laptop GPU
- 训练时间 | Training Time: ~5分钟 | ~5 minutes
适用场景 | Use Cases
- ✅ 加密货币新闻情感分析
- ✅ 社交媒体舆情监控
- ✅ 金融市场情绪指标
- ✅ 实时新闻情感跟踪
- ✅ 投资决策辅助参考
局限性 | Limitations
- ⚠️ 主要针对加密货币领域的金融新闻,其他金融领域可能表现不佳
- ⚠️ 负面样本相对较少(16%),对负面情感的识别可能不够敏感
- ⚠️ 短文本(少于10字)的分析准确率可能下降
- ⚠️ 仅支持简体中文
- ⚠️ 模型不能替代人工判断,仅供参考
许可证 | License
Apache-2.0
引用 | Citation
如果使用本模型,请引用:
@misc{watchtower-sentiment-2025,
title={Chinese Financial Sentiment Analysis Model (Crypto Focus)},
author={Onefly},
year={2025},
howpublished={\url{https://huggingface.co/YOUR_USERNAME/sentiment-finetuned-1000}},
note={Fine-tuned from yiyanghkust/finbert-tone-chinese}
}
基础模型 | Base Model
本模型基于以下模型微调:
感谢原作者的贡献!
更新日志 | Changelog
v2.0 (2025-12-09)
- ✅ 扩充训练数据至1000条
- ✅ 修正标注错误,提升数据质量
- ✅ 优化类别分布,提升模型平衡性
- ✅ F1分数提升2.01%(0.6165 → 0.6365)
v1.0 (Initial Release)
- 基于500条标注数据的初始版本
联系方式 | Contact
如有问题或建议,欢迎提 issue 或 PR。
维护者 | Maintainer: Onefly 最后更新 | Last Updated: 2025-12-09
- Downloads last month
- 14
Evaluation results
- Accuracyself-reported0.645
- F1 Scoreself-reported0.636
- Precisionself-reported0.639
- Recallself-reported0.645