YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Beat Tracking Challenge

A challenge for detecting beats and downbeats in music audio, with a focus on handling dynamic tempo changes common in rhythm game charts.

Goal

The goal is to detect and identify beats and downbeats in audio to assist composers by providing a flexible timing grid when working with samples that have dynamic BPM changes.

  • Beat: A regular pulse in music (e.g., quarter notes in 4/4 time)
  • Downbeat: The first beat of each measure (the "1" in counting "1-2-3-4")

This is particularly useful for:

  • Music production with samples of varying tempos
  • Rhythm game chart creation and verification
  • Audio analysis and music information retrieval (MIR)

Dataset

The dataset is derived from Taiko no Tatsujin rhythm game charts, providing high-quality human-annotated beat and downbeat ground truth.

Source: JacobLinCool/taiko-1000-parsed

Split Tracks Duration Description
train ~1000 1-3 min each Training data with beat/downbeat annotations
test ~100 1-3 min each Held-out test set for final evaluation

Data Features

Each example contains:

Field Type Description
audio Audio Audio waveform at 16kHz sample rate
title str Track title
beats list[float] Beat timestamps in seconds
downbeats list[float] Downbeat timestamps in seconds

Dataset Characteristics

  • Dynamic BPM: Many tracks feature tempo changes mid-song
  • Variable Time Signatures: Common patterns include 4/4, 3/4, 6/8, and more exotic meters
  • Diverse Genres: Japanese pop, anime themes, classical arrangements, electronic music
  • High-Quality Annotations: Derived from professional rhythm game charts

Evaluation Metrics

The evaluation considers both timing accuracy and metrical correctness. Models are evaluated on both beat and downbeat detection tasks.

Primary Metrics

1. Weighted F1-Score (Main Ranking Metric)

F1-scores are calculated at multiple timing thresholds (3ms to 30ms), then combined with inverse-threshold weighting:

Threshold Weight Rationale
3ms 1.000 Full weight for highest precision
6ms 0.500 Half weight
9ms 0.333 One-third weight
12ms 0.250 ...
15ms 0.200
18ms 0.167
21ms 0.143
24ms 0.125
27ms 0.111
30ms 0.100 Minimum weight for coarsest threshold

Formula:

Weighted F1 = Ξ£(w_t Γ— F1_t) / Ξ£(w_t)
where w_t = 3ms / t (inverse threshold weighting)

This weighting scheme rewards models that achieve high precision at tight tolerances while still considering coarser thresholds.

2. Continuity Metrics (CMLt, AMLt)

Based on the MIREX beat tracking evaluation protocol using mir_eval:

Metric Full Name Description
CMLt Correct Metrical Level Total Percentage of beats correctly tracked at the exact metrical level (Β±17.5% of beat interval)
AMLt Any Metrical Level Total Same as CMLt, but allows for acceptable metrical variations (double/half tempo, off-beat)
CMLc Correct Metrical Level Continuous Longest continuous correctly-tracked segment at exact metrical level
AMLc Any Metrical Level Continuous Longest continuous segment at any acceptable metrical level

Note: Continuity metrics use a default min_beat_time=5.0s (skipping the first 5 seconds) to avoid evaluating potentially unstable tempo at the beginning of tracks.

Metric Interpretation

Metric What it measures Good Score
Weighted F1 Precise timing accuracy > 0.7
CMLt Correct tempo tracking > 0.8
AMLt Tempo tracking (flexible) > 0.9
CMLc Longest stable segment > 0.5

Evaluation Summary

For each model, we report:

Beat Detection:
  Weighted F1: X.XXXX
  CMLt: X.XXXX  AMLt: X.XXXX
  CMLc: X.XXXX  AMLc: X.XXXX

Downbeat Detection:
  Weighted F1: X.XXXX
  CMLt: X.XXXX  AMLt: X.XXXX
  CMLc: X.XXXX  AMLc: X.XXXX

Combined Weighted F1: X.XXXX  (average of beat and downbeat)

Benchmark Results

Results evaluated on 100 tracks from the test set:

Model Combined F1 Beat F1 Downbeat F1 CMLt (Beat) CMLt (Downbeat)
Baseline 1 (ODCNN) 0.0765 0.0861 0.0669 0.0731 0.0321
Baseline 2 (ResNet-SE) 0.2775 0.3292 0.2258 0.3287 0.1146

Note: Baseline 2 (ResNet-SE) demonstrates significantly better performance due to larger context window and deeper architecture.


Quick Start

Setup

uv sync

Train Models

# Train Baseline 1 (ODCNN)
uv run -m exp.baseline1.train

# Train Baseline 2 (ResNet-SE)
uv run -m exp.baseline2.train

# Train specific target only (e.g. for Baseline 2)
uv run -m exp.baseline2.train --target beats
uv run -m exp.baseline2.train --target downbeats

Run Evaluation

# Evaluation (replace baseline1 with baseline2 to evaluate the new model)
uv run -m exp.baseline1.eval

# Full evaluation with visualization and audio
uv run -m exp.baseline1.eval --visualize --synthesize --summary-plot

# Evaluate on more samples with custom output directory
uv run -m exp.baseline1.eval --num-samples 50 --output-dir outputs/eval_baseline1

Evaluation Options

Option Description
Option Description
-------- -------------
--model-dir DIR Model directory (default: outputs/baseline1)
--num-samples N Number of samples to evaluate (default: 20)
--output-dir DIR Output directory (default: outputs/eval)
--visualize Generate visualization plots for each track
--synthesize Generate audio files with click tracks
--viz-tracks N Number of tracks to visualize/synthesize (default: 5)
--time-range START END Limit visualization time range (seconds)
--click-volume FLOAT Click sound volume (0.0 to 1.0, default: 0.5)
--summary-plot Generate summary evaluation bar charts

Visualization & Audio Tools

Beat Visualization

Generate plots comparing predicted vs ground truth beats:

uv run -m exp.baseline1.eval --visualize --viz-tracks 10

Output: outputs/eval/plots/track_XXX.png

Click Track Audio

Generate audio files with click sounds overlaid on the original music:

uv run -m exp.baseline1.eval --synthesize

Output files in outputs/eval/audio/:

  • track_XXX_pred.wav - Original audio + predicted beat clicks (1000Hz beat, 1500Hz downbeat)
  • track_XXX_gt.wav - Original audio + ground truth clicks (800Hz beat, 1200Hz downbeat)
  • track_XXX_both.wav - Original audio + both prediction and ground truth clicks

Summary Plot

Generate bar charts summarizing F1 scores and continuity metrics:

uv run -m exp.baseline1.eval --summary-plot

Output: outputs/eval/evaluation_summary.png


Models

Baseline 1: ODCNN

A 10-year-old baseline model: https://ieeexplore.ieee.org/document/6854953.

The original baseline implements the Onset Detection CNN (ODCNN) architecture:

Architecture

  • Input: Multi-view mel spectrogram (3 window sizes: 23ms, 46ms, 93ms)
  • CNN Backbone: 3 convolutional blocks with max pooling
  • Output: Frame-level beat/downbeat probability
  • Inference: Β±7 frames context (Β±70ms)

Baseline 2: ResNet-SE

Inspired by ResNet-SE: https://arxiv.org/abs/1709.01507.

A modernized architecture designed to capture longer temporal context:

Architecture

  • Input: Mel spectrogram with larger context
  • Backbone: ResNet with Squeeze-and-Excitation (SE) blocks
  • Context: Β±50 frames (~1s) window
  • Features: Deeper network (4 stages) with effective channel attention
  • Parameters: ~400k (Small & Efficient)

Training Details

Both models use similar training loops:

  • Optimizer: SGD (Baseline 1) / AdamW (Baseline 2)
  • Learning Rate: Cosine annealing
  • Loss: Binary Cross-Entropy
  • Epochs: 50 (Baseline 1) / 3 (Baseline 2)
  • Batch Size: 512 (Baseline 1) / 128 (Baseline 2)

Project Structure

exp-onset/
β”œβ”€β”€ exp/
β”‚   β”œβ”€β”€ baseline1/         # Baseline 1 (ODCNN)
β”‚   β”‚   β”œβ”€β”€ model.py       # ODCNN architecture
β”‚   β”‚   β”œβ”€β”€ train.py
β”‚   β”‚   β”œβ”€β”€ eval.py
β”‚   β”‚   β”œβ”€β”€ data.py
β”‚   β”‚   └── utils.py
β”‚   β”œβ”€β”€ baseline2/         # Baseline 2 (ResNet-SE)
β”‚   β”‚   β”œβ”€β”€ model.py       # ResNet-SE
β”‚   β”‚   β”œβ”€β”€ train.py
β”‚   β”‚   β”œβ”€β”€ eval.py
β”‚   β”‚   └── data.py
β”‚   └── data/
β”‚       β”œβ”€β”€ load.py        # Dataset loading & preprocessing
β”‚       β”œβ”€β”€ eval.py        # Evaluation metrics (F1, CML, AML)
β”‚       β”œβ”€β”€ audio.py       # Click track synthesis
β”‚       └── viz.py         # Visualization utilities
β”œβ”€β”€ outputs/
β”‚   β”œβ”€β”€ baseline1/         # Trained models (Baseline 1)
β”‚   β”œβ”€β”€ baseline2/         # Trained models (Baseline 2)
β”‚   └── eval/              # Evaluation outputs
β”‚       β”œβ”€β”€ plots/         # Visualization images
β”‚       β”œβ”€β”€ audio/         # Click track audio files
β”‚       └── evaluation_summary.png
β”œβ”€β”€ README.md
β”œβ”€β”€ DATASET.md             # Raw dataset specification
└── pyproject.toml

License

This project is for research and educational purposes. The dataset is derived from publicly available rhythm game charts.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support