distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5475
- Accuracy: 0.87
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 2.0061 | 1.0 | 113 | 1.8762 | 0.5 |
| 1.2647 | 2.0 | 226 | 1.3347 | 0.55 |
| 1.1128 | 3.0 | 339 | 1.0264 | 0.71 |
| 0.6556 | 4.0 | 452 | 0.8530 | 0.76 |
| 0.6097 | 5.0 | 565 | 0.6368 | 0.86 |
| 0.4627 | 6.0 | 678 | 0.5687 | 0.85 |
| 0.238 | 7.0 | 791 | 0.5394 | 0.85 |
| 0.1377 | 8.0 | 904 | 0.5405 | 0.85 |
| 0.1691 | 9.0 | 1017 | 0.5555 | 0.86 |
| 0.0843 | 10.0 | 1130 | 0.5475 | 0.87 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu126
- Datasets 4.1.1
- Tokenizers 0.22.0
- Downloads last month
- -
Model tree for Batnini/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubertDataset used to train Batnini/distilhubert-finetuned-gtzan
Evaluation results
- Accuracy on GTZANself-reported0.870