Upload folder using huggingface_hub
Browse files- README.md +117 -0
- config.json +67 -0
- model.py +245 -0
- requirements.txt +4 -0
- train_model.py +36 -0
README.md
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- recommendation-system
|
| 5 |
+
- collaborative-filtering
|
| 6 |
+
- matrix-factorization
|
| 7 |
+
- movie-recommendations
|
| 8 |
+
- movielens
|
| 9 |
+
- machine-learning
|
| 10 |
+
library_name: scikit-learn
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# DataSynthis_ML_JobTask
|
| 14 |
+
|
| 15 |
+
A powerful movie recommendation system using collaborative filtering and matrix factorization techniques on the MovieLens 100k dataset.
|
| 16 |
+
|
| 17 |
+
## Model Description
|
| 18 |
+
|
| 19 |
+
This model provides personalized movie recommendations using two state-of-the-art algorithms:
|
| 20 |
+
|
| 21 |
+
- **Collaborative Filtering (CF)**: Item-based similarity using cosine similarity
|
| 22 |
+
- **Matrix Factorization (SVD)**: Singular Value Decomposition for dimensionality reduction
|
| 23 |
+
|
| 24 |
+
## Dataset
|
| 25 |
+
|
| 26 |
+
- **MovieLens 100k**: 100,000 ratings from 943 users on 1,682 movies
|
| 27 |
+
- **User ID Range**: 1-943
|
| 28 |
+
- **Movie Count**: 1,682 unique movies
|
| 29 |
+
- **Rating Scale**: 1-5 stars
|
| 30 |
+
|
| 31 |
+
## Usage
|
| 32 |
+
|
| 33 |
+
### Python
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
from model import predict
|
| 37 |
+
|
| 38 |
+
# Get recommendations using SVD (default)
|
| 39 |
+
recommendations = predict(user_id=1, n_recommendations=10, method="svd")
|
| 40 |
+
|
| 41 |
+
# Get recommendations using collaborative filtering
|
| 42 |
+
recommendations = predict(user_id=1, n_recommendations=10, method="cf")
|
| 43 |
+
|
| 44 |
+
print(recommendations)
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### Parameters
|
| 48 |
+
|
| 49 |
+
- **user_id** (int): User ID between 1-943 (required)
|
| 50 |
+
- **n_recommendations** (int): Number of recommendations between 1-20 (default: 10)
|
| 51 |
+
- **method** (str): "svd" for matrix factorization or "cf" for collaborative filtering (default: "svd")
|
| 52 |
+
|
| 53 |
+
### Output
|
| 54 |
+
|
| 55 |
+
Returns a list of dictionaries with movie recommendations:
|
| 56 |
+
|
| 57 |
+
```json
|
| 58 |
+
[
|
| 59 |
+
{
|
| 60 |
+
"movie_id": 50,
|
| 61 |
+
"title": "Star Wars (1977)",
|
| 62 |
+
"predicted_rating": 4.5
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"movie_id": 181,
|
| 66 |
+
"title": "Return of the Jedi (1983)",
|
| 67 |
+
"predicted_rating": 4.3
|
| 68 |
+
}
|
| 69 |
+
]
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
## Model Performance
|
| 73 |
+
|
| 74 |
+
- **SVD Method**: Fast predictions with good accuracy using 20 components
|
| 75 |
+
- **Collaborative Filtering**: More interpretable, based on item similarity
|
| 76 |
+
- **Cold Start Handling**: Graceful error handling for unknown users
|
| 77 |
+
|
| 78 |
+
## Technical Details
|
| 79 |
+
|
| 80 |
+
- **Framework**: Scikit-learn
|
| 81 |
+
- **Algorithms**: TruncatedSVD, Cosine Similarity
|
| 82 |
+
- **Data Processing**: Pandas for efficient matrix operations
|
| 83 |
+
- **Memory Efficient**: Optimized for large-scale recommendation tasks
|
| 84 |
+
|
| 85 |
+
## Installation
|
| 86 |
+
|
| 87 |
+
```bash
|
| 88 |
+
pip install pandas numpy scikit-learn
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
## Training
|
| 92 |
+
|
| 93 |
+
The model is pre-trained on the MovieLens 100k dataset. To retrain:
|
| 94 |
+
|
| 95 |
+
```python
|
| 96 |
+
from model import MovieRecommender
|
| 97 |
+
|
| 98 |
+
model = MovieRecommender()
|
| 99 |
+
model.load_data()
|
| 100 |
+
model.train()
|
| 101 |
+
model.save_model("movie_recommender.pkl")
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
## Citation
|
| 105 |
+
|
| 106 |
+
```bibtex
|
| 107 |
+
@misc{datasynthis_ml_jobtask,
|
| 108 |
+
title={DataSynthis ML JobTask: Movie Recommendation System},
|
| 109 |
+
author={tasdid25},
|
| 110 |
+
year={2025},
|
| 111 |
+
url={https://huggingface.co/tasdid25/DataSynthis_ML_JobTask}
|
| 112 |
+
}
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
## License
|
| 116 |
+
|
| 117 |
+
MIT License - see LICENSE file for details.
|
config.json
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "movie_recommendation",
|
| 3 |
+
"name": "DataSynthis_ML_JobTask",
|
| 4 |
+
"description": "Movie recommendation system using collaborative filtering and matrix factorization",
|
| 5 |
+
"version": "1.0.0",
|
| 6 |
+
"author": "tasdid25",
|
| 7 |
+
"license": "MIT",
|
| 8 |
+
"framework": "scikit-learn",
|
| 9 |
+
"algorithms": [
|
| 10 |
+
"collaborative_filtering",
|
| 11 |
+
"matrix_factorization_svd"
|
| 12 |
+
],
|
| 13 |
+
"dataset": "movielens_100k",
|
| 14 |
+
"features": {
|
| 15 |
+
"user_id_range": [1, 943],
|
| 16 |
+
"movie_count": 1682,
|
| 17 |
+
"rating_count": 100000,
|
| 18 |
+
"recommendation_methods": ["svd", "cf"],
|
| 19 |
+
"max_recommendations": 20
|
| 20 |
+
},
|
| 21 |
+
"input_schema": {
|
| 22 |
+
"user_id": {
|
| 23 |
+
"type": "integer",
|
| 24 |
+
"description": "User ID (1-943)",
|
| 25 |
+
"required": true
|
| 26 |
+
},
|
| 27 |
+
"n_recommendations": {
|
| 28 |
+
"type": "integer",
|
| 29 |
+
"description": "Number of recommendations (1-20)",
|
| 30 |
+
"default": 10,
|
| 31 |
+
"required": false
|
| 32 |
+
},
|
| 33 |
+
"method": {
|
| 34 |
+
"type": "string",
|
| 35 |
+
"description": "Recommendation method",
|
| 36 |
+
"enum": ["svd", "cf"],
|
| 37 |
+
"default": "svd",
|
| 38 |
+
"required": false
|
| 39 |
+
}
|
| 40 |
+
},
|
| 41 |
+
"output_schema": {
|
| 42 |
+
"type": "array",
|
| 43 |
+
"items": {
|
| 44 |
+
"type": "object",
|
| 45 |
+
"properties": {
|
| 46 |
+
"movie_id": {
|
| 47 |
+
"type": "integer",
|
| 48 |
+
"description": "Movie ID"
|
| 49 |
+
},
|
| 50 |
+
"title": {
|
| 51 |
+
"type": "string",
|
| 52 |
+
"description": "Movie title"
|
| 53 |
+
},
|
| 54 |
+
"predicted_rating": {
|
| 55 |
+
"type": "number",
|
| 56 |
+
"description": "Predicted rating for the user"
|
| 57 |
+
}
|
| 58 |
+
}
|
| 59 |
+
}
|
| 60 |
+
},
|
| 61 |
+
"dependencies": [
|
| 62 |
+
"pandas>=2.0.0",
|
| 63 |
+
"numpy>=1.24.0",
|
| 64 |
+
"scikit-learn>=1.3.0"
|
| 65 |
+
],
|
| 66 |
+
"inference_function": "predict"
|
| 67 |
+
}
|
model.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
DataSynthis_ML_JobTask - Movie Recommendation Model
|
| 3 |
+
A movie recommendation system using collaborative filtering and matrix factorization.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import numpy as np
|
| 8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 9 |
+
from sklearn.decomposition import TruncatedSVD
|
| 10 |
+
import os
|
| 11 |
+
import urllib.request
|
| 12 |
+
import zipfile
|
| 13 |
+
import pickle
|
| 14 |
+
from typing import List, Dict, Optional, Union
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class MovieRecommender:
|
| 18 |
+
"""
|
| 19 |
+
Movie Recommendation Model using collaborative filtering and SVD.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
def __init__(self):
|
| 23 |
+
self.ratings = None
|
| 24 |
+
self.movies = None
|
| 25 |
+
self.user_item_matrix = None
|
| 26 |
+
self.item_similarity = None
|
| 27 |
+
self.item_similarity_df = None
|
| 28 |
+
self.svd_model = None
|
| 29 |
+
self.pred_svd_df = None
|
| 30 |
+
self.is_trained = False
|
| 31 |
+
|
| 32 |
+
def load_data(self):
|
| 33 |
+
"""Load MovieLens 100k dataset."""
|
| 34 |
+
dataset_url = "http://files.grouplens.org/datasets/movielens/ml-100k.zip"
|
| 35 |
+
dataset_path = "ml-100k"
|
| 36 |
+
|
| 37 |
+
if not os.path.exists(dataset_path):
|
| 38 |
+
if os.path.exists("ml-100k.zip"):
|
| 39 |
+
print("Extracting existing MovieLens 100k dataset...")
|
| 40 |
+
with zipfile.ZipFile("ml-100k.zip", "r") as zip_ref:
|
| 41 |
+
zip_ref.extractall(".")
|
| 42 |
+
print("Extraction complete.")
|
| 43 |
+
else:
|
| 44 |
+
print("Downloading MovieLens 100k dataset...")
|
| 45 |
+
try:
|
| 46 |
+
urllib.request.urlretrieve(dataset_url, "ml-100k.zip")
|
| 47 |
+
with zipfile.ZipFile("ml-100k.zip", "r") as zip_ref:
|
| 48 |
+
zip_ref.extractall(".")
|
| 49 |
+
print("Download complete.")
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Download failed: {e}")
|
| 52 |
+
raise Exception("Could not download dataset")
|
| 53 |
+
|
| 54 |
+
# Load ratings
|
| 55 |
+
self.ratings = pd.read_csv(
|
| 56 |
+
"ml-100k/u.data",
|
| 57 |
+
sep="\t",
|
| 58 |
+
names=["user_id", "movie_id", "rating", "timestamp"]
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Load movies
|
| 62 |
+
self.movies = pd.read_csv(
|
| 63 |
+
"ml-100k/u.item",
|
| 64 |
+
sep="|",
|
| 65 |
+
encoding="ISO-8859-1",
|
| 66 |
+
names=["movie_id", "title", "release_date", "video_release_date", "IMDb_URL",
|
| 67 |
+
"unknown", "Action", "Adventure", "Animation", "Children", "Comedy",
|
| 68 |
+
"Crime", "Documentary", "Drama", "Fantasy", "Film-Noir", "Horror",
|
| 69 |
+
"Musical", "Mystery", "Romance", "Sci-Fi", "Thriller", "War", "Western"]
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Remove timestamp column
|
| 73 |
+
self.ratings.drop("timestamp", axis=1, inplace=True)
|
| 74 |
+
|
| 75 |
+
print(f"Loaded {len(self.ratings)} ratings from {len(self.ratings['user_id'].unique())} users")
|
| 76 |
+
print(f"Loaded {len(self.movies)} movies")
|
| 77 |
+
|
| 78 |
+
def train(self):
|
| 79 |
+
"""Train the recommendation models."""
|
| 80 |
+
if self.ratings is None:
|
| 81 |
+
self.load_data()
|
| 82 |
+
|
| 83 |
+
# Create user-item matrix
|
| 84 |
+
self.user_item_matrix = self.ratings.pivot(
|
| 85 |
+
index='user_id', columns='movie_id', values='rating'
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
# Collaborative Filtering - Item-based similarity
|
| 89 |
+
self.item_similarity = cosine_similarity(self.user_item_matrix.T.fillna(0))
|
| 90 |
+
self.item_similarity_df = pd.DataFrame(
|
| 91 |
+
self.item_similarity,
|
| 92 |
+
index=self.user_item_matrix.columns,
|
| 93 |
+
columns=self.user_item_matrix.columns
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# SVD - Matrix Factorization
|
| 97 |
+
R = self.user_item_matrix.fillna(0)
|
| 98 |
+
self.svd_model = TruncatedSVD(n_components=20, random_state=42)
|
| 99 |
+
U = self.svd_model.fit_transform(R)
|
| 100 |
+
Sigma = np.diag(self.svd_model.singular_values_)
|
| 101 |
+
Vt = self.svd_model.components_
|
| 102 |
+
pred_svd = np.dot(np.dot(U, Sigma), Vt)
|
| 103 |
+
self.pred_svd_df = pd.DataFrame(pred_svd, index=R.index, columns=R.columns)
|
| 104 |
+
|
| 105 |
+
self.is_trained = True
|
| 106 |
+
print("Model training completed!")
|
| 107 |
+
|
| 108 |
+
def predict_ratings_cf(self, user_id: int) -> pd.Series:
|
| 109 |
+
"""Predict ratings using collaborative filtering."""
|
| 110 |
+
if not self.is_trained:
|
| 111 |
+
raise ValueError("Model must be trained first")
|
| 112 |
+
|
| 113 |
+
if user_id not in self.user_item_matrix.index:
|
| 114 |
+
raise ValueError(f"User {user_id} not found in dataset")
|
| 115 |
+
|
| 116 |
+
user_ratings = self.user_item_matrix.loc[user_id]
|
| 117 |
+
weighted_sum = self.item_similarity_df.dot(user_ratings.fillna(0))
|
| 118 |
+
sim_sum = np.abs(self.item_similarity_df).dot(user_ratings.notna().astype(int))
|
| 119 |
+
pred = weighted_sum / np.maximum(sim_sum, 1e-9)
|
| 120 |
+
return pred
|
| 121 |
+
|
| 122 |
+
def recommend_movies(self, user_id: int, n_recommendations: int = 10,
|
| 123 |
+
method: str = "svd") -> List[Dict]:
|
| 124 |
+
"""
|
| 125 |
+
Get movie recommendations for a user.
|
| 126 |
+
|
| 127 |
+
Args:
|
| 128 |
+
user_id: User ID to get recommendations for
|
| 129 |
+
n_recommendations: Number of recommendations to return
|
| 130 |
+
method: "svd" or "cf" (collaborative filtering)
|
| 131 |
+
|
| 132 |
+
Returns:
|
| 133 |
+
List of dictionaries with movie recommendations
|
| 134 |
+
"""
|
| 135 |
+
if not self.is_trained:
|
| 136 |
+
self.train()
|
| 137 |
+
|
| 138 |
+
# Check if user exists
|
| 139 |
+
if user_id not in self.user_item_matrix.index:
|
| 140 |
+
available_users = sorted(self.user_item_matrix.index.tolist())
|
| 141 |
+
return [{
|
| 142 |
+
"error": f"User {user_id} not found",
|
| 143 |
+
"available_users": f"Available user IDs: {available_users[:10]}... (showing first 10)"
|
| 144 |
+
}]
|
| 145 |
+
|
| 146 |
+
# Get predictions
|
| 147 |
+
if method == "svd":
|
| 148 |
+
preds = self.pred_svd_df.loc[user_id]
|
| 149 |
+
else: # collaborative filtering
|
| 150 |
+
preds = self.predict_ratings_cf(user_id)
|
| 151 |
+
|
| 152 |
+
# Remove already watched movies
|
| 153 |
+
watched = self.ratings[self.ratings.user_id == user_id].movie_id.values
|
| 154 |
+
preds = preds.drop(watched, errors='ignore')
|
| 155 |
+
|
| 156 |
+
# Get top recommendations
|
| 157 |
+
top_movies = preds.sort_values(ascending=False).head(n_recommendations).index
|
| 158 |
+
recommendations = self.movies[self.movies.movie_id.isin(top_movies)][["movie_id", "title"]]
|
| 159 |
+
|
| 160 |
+
# Convert to list of dictionaries
|
| 161 |
+
result = []
|
| 162 |
+
for _, row in recommendations.iterrows():
|
| 163 |
+
result.append({
|
| 164 |
+
"movie_id": int(row["movie_id"]),
|
| 165 |
+
"title": row["title"],
|
| 166 |
+
"predicted_rating": float(preds[row["movie_id"]])
|
| 167 |
+
})
|
| 168 |
+
|
| 169 |
+
return result
|
| 170 |
+
|
| 171 |
+
def get_user_stats(self, user_id: int) -> Dict:
|
| 172 |
+
"""Get statistics for a user."""
|
| 173 |
+
if not self.is_trained:
|
| 174 |
+
self.train()
|
| 175 |
+
|
| 176 |
+
if user_id not in self.user_item_matrix.index:
|
| 177 |
+
return {"error": f"User {user_id} not found"}
|
| 178 |
+
|
| 179 |
+
user_ratings = self.ratings[self.ratings.user_id == user_id]
|
| 180 |
+
|
| 181 |
+
return {
|
| 182 |
+
"user_id": user_id,
|
| 183 |
+
"total_ratings": len(user_ratings),
|
| 184 |
+
"average_rating": float(user_ratings["rating"].mean()),
|
| 185 |
+
"rating_distribution": user_ratings["rating"].value_counts().to_dict()
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
def get_available_users(self) -> List[int]:
|
| 189 |
+
"""Get list of available user IDs."""
|
| 190 |
+
if not self.is_trained:
|
| 191 |
+
self.train()
|
| 192 |
+
return sorted(self.user_item_matrix.index.tolist())
|
| 193 |
+
|
| 194 |
+
def save_model(self, path: str):
|
| 195 |
+
"""Save the trained model."""
|
| 196 |
+
if not self.is_trained:
|
| 197 |
+
raise ValueError("Model must be trained first")
|
| 198 |
+
|
| 199 |
+
model_data = {
|
| 200 |
+
'ratings': self.ratings,
|
| 201 |
+
'movies': self.movies,
|
| 202 |
+
'user_item_matrix': self.user_item_matrix,
|
| 203 |
+
'item_similarity_df': self.item_similarity_df,
|
| 204 |
+
'svd_model': self.svd_model,
|
| 205 |
+
'pred_svd_df': self.pred_svd_df,
|
| 206 |
+
'is_trained': self.is_trained
|
| 207 |
+
}
|
| 208 |
+
|
| 209 |
+
with open(path, 'wb') as f:
|
| 210 |
+
pickle.dump(model_data, f)
|
| 211 |
+
|
| 212 |
+
print(f"Model saved to {path}")
|
| 213 |
+
|
| 214 |
+
def load_model(self, path: str):
|
| 215 |
+
"""Load a trained model."""
|
| 216 |
+
with open(path, 'rb') as f:
|
| 217 |
+
model_data = pickle.load(f)
|
| 218 |
+
|
| 219 |
+
self.ratings = model_data['ratings']
|
| 220 |
+
self.movies = model_data['movies']
|
| 221 |
+
self.user_item_matrix = model_data['user_item_matrix']
|
| 222 |
+
self.item_similarity_df = model_data['item_similarity_df']
|
| 223 |
+
self.svd_model = model_data['svd_model']
|
| 224 |
+
self.pred_svd_df = model_data['pred_svd_df']
|
| 225 |
+
self.is_trained = model_data['is_trained']
|
| 226 |
+
|
| 227 |
+
print(f"Model loaded from {path}")
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
# Create a global model instance for inference
|
| 231 |
+
model = MovieRecommender()
|
| 232 |
+
|
| 233 |
+
def predict(user_id: int, n_recommendations: int = 10, method: str = "svd") -> List[Dict]:
|
| 234 |
+
"""
|
| 235 |
+
Inference function for Hugging Face model.
|
| 236 |
+
|
| 237 |
+
Args:
|
| 238 |
+
user_id: User ID to get recommendations for
|
| 239 |
+
n_recommendations: Number of recommendations (default: 10)
|
| 240 |
+
method: Recommendation method - "svd" or "cf" (default: "svd")
|
| 241 |
+
|
| 242 |
+
Returns:
|
| 243 |
+
List of movie recommendations
|
| 244 |
+
"""
|
| 245 |
+
return model.recommend_movies(user_id, n_recommendations, method)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas>=2.0.0
|
| 2 |
+
numpy>=1.24.0
|
| 3 |
+
scikit-learn>=1.3.0
|
| 4 |
+
huggingface_hub>=0.20.0
|
train_model.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Training script for DataSynthis_ML_JobTask model.
|
| 3 |
+
This script trains the model and saves it for deployment.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from model import MovieRecommender
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
def main():
|
| 10 |
+
"""Train and save the movie recommendation model."""
|
| 11 |
+
print("Starting model training...")
|
| 12 |
+
|
| 13 |
+
# Initialize model
|
| 14 |
+
model = MovieRecommender()
|
| 15 |
+
|
| 16 |
+
# Train the model
|
| 17 |
+
model.train()
|
| 18 |
+
|
| 19 |
+
# Save the trained model
|
| 20 |
+
model.save_model("movie_recommender.pkl")
|
| 21 |
+
|
| 22 |
+
print("Model training completed and saved!")
|
| 23 |
+
|
| 24 |
+
# Test the model
|
| 25 |
+
print("\nTesting model with user ID 1...")
|
| 26 |
+
recommendations = model.recommend_movies(user_id=1, n_recommendations=5, method="svd")
|
| 27 |
+
|
| 28 |
+
print("Sample recommendations:")
|
| 29 |
+
for rec in recommendations:
|
| 30 |
+
print(f"- {rec['title']} (ID: {rec['movie_id']}, Rating: {rec['predicted_rating']:.2f})")
|
| 31 |
+
|
| 32 |
+
print(f"\nAvailable users: {len(model.get_available_users())}")
|
| 33 |
+
print(f"User ID range: {min(model.get_available_users())} - {max(model.get_available_users())}")
|
| 34 |
+
|
| 35 |
+
if __name__ == "__main__":
|
| 36 |
+
main()
|