Upload 2 files
Browse files- handler.py +119 -0
- requirements.txt +4 -0
handler.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
|
| 5 |
+
class EndpointHandler():
|
| 6 |
+
def __init__(self, model_id: str):
|
| 7 |
+
"""
|
| 8 |
+
Initializes the handler by loading the model and tokenizer.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
model_id (str): The Hugging Face model ID (e.g., "MoritzLaurer/DeBERTa-v3-base-mnli")
|
| 12 |
+
This is automatically passed by the Inference Endpoint infrastructure.
|
| 13 |
+
"""
|
| 14 |
+
print(f"Loading model '{model_id}'...")
|
| 15 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
print(f"Using device: {self.device}")
|
| 17 |
+
|
| 18 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 19 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 20 |
+
|
| 21 |
+
# Move model to the determined device
|
| 22 |
+
self.model.to(self.device)
|
| 23 |
+
# Set model to evaluation mode for consistent inference
|
| 24 |
+
self.model.eval()
|
| 25 |
+
print("Model and tokenizer loaded successfully.")
|
| 26 |
+
|
| 27 |
+
# --- Determine Label Order ---
|
| 28 |
+
# Preferred: Dynamically get labels from model config
|
| 29 |
+
try:
|
| 30 |
+
# Sort by ID to ensure consistent order if dict isn't ordered
|
| 31 |
+
sorted_labels = sorted(self.model.config.id2label.items())
|
| 32 |
+
self.label_names = [label for _, label in sorted_labels]
|
| 33 |
+
print(f"Using label names from model config: {self.label_names}")
|
| 34 |
+
# Basic validation for NLI task
|
| 35 |
+
if len(self.label_names) != 3:
|
| 36 |
+
print(f"Warning: Expected 3 labels for NLI, but model config has {len(self.label_names)}. Proceeding with model's labels.")
|
| 37 |
+
if not any("entail" in l.lower() for l in self.label_names) or \
|
| 38 |
+
not any("neutral" in l.lower() for l in self.label_names) or \
|
| 39 |
+
not any("contra" in l.lower() for l in self.label_names):
|
| 40 |
+
print(f"Warning: Model labels {self.label_names} might not match standard NLI labels ('entailment', 'neutral', 'contradiction').")
|
| 41 |
+
|
| 42 |
+
except AttributeError:
|
| 43 |
+
# Fallback: Use the explicitly requested labels if config is missing/malformed
|
| 44 |
+
self.label_names = ["entailment", "neutral", "contradiction"]
|
| 45 |
+
print(f"Warning: Could not read labels from model config. Falling back to default: {self.label_names}")
|
| 46 |
+
print("Ensure this order matches the actual output order of the model!")
|
| 47 |
+
|
| 48 |
+
print(f"Configured label order for output: {self.label_names}")
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any] | List[Dict[str, Any]]:
|
| 52 |
+
"""
|
| 53 |
+
Handles inference requests.
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
data (Dict[str, Any]): The input data payload from the request.
|
| 57 |
+
Expected keys: "premise" (str) and "hypothesis" (str).
|
| 58 |
+
Can optionally be nested under "inputs".
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
Dict[str, Any] | List[Dict[str, Any]]: A dictionary containing error info,
|
| 62 |
+
or a list of dictionaries, each mapping
|
| 63 |
+
a label name to its probability score.
|
| 64 |
+
"""
|
| 65 |
+
# --- Input Parsing ---
|
| 66 |
+
inputs = data.get("inputs", data) # Allow for optional "inputs" nesting
|
| 67 |
+
premise = inputs.get("premise")
|
| 68 |
+
hypothesis = inputs.get("hypothesis")
|
| 69 |
+
|
| 70 |
+
# Basic input validation
|
| 71 |
+
if not premise or not isinstance(premise, str):
|
| 72 |
+
return {"error": "Missing or invalid 'premise' key in input. Expected a string."}
|
| 73 |
+
if not hypothesis or not isinstance(hypothesis, str):
|
| 74 |
+
return {"error": "Missing or invalid 'hypothesis' key in input. Expected a string."}
|
| 75 |
+
|
| 76 |
+
# --- Tokenization ---
|
| 77 |
+
# Tokenize the premise-hypothesis pair
|
| 78 |
+
try:
|
| 79 |
+
tokenized_inputs = self.tokenizer(
|
| 80 |
+
premise,
|
| 81 |
+
hypothesis,
|
| 82 |
+
return_tensors="pt", # Return PyTorch tensors
|
| 83 |
+
truncation=True, # Truncate if longer than max length
|
| 84 |
+
padding=True, # Pad to the longest sequence in the batch (or max_length)
|
| 85 |
+
max_length=self.tokenizer.model_max_length # Use model's max length
|
| 86 |
+
)
|
| 87 |
+
except Exception as e:
|
| 88 |
+
print(f"Error during tokenization: {e}")
|
| 89 |
+
return {"error": f"Failed to tokenize input: {e}"}
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# Move tokenized inputs to the same device as the model
|
| 93 |
+
tokenized_inputs = {k: v.to(self.device) for k, v in tokenized_inputs.items()}
|
| 94 |
+
|
| 95 |
+
# --- Inference ---
|
| 96 |
+
try:
|
| 97 |
+
with torch.no_grad(): # Disable gradient calculations for efficiency
|
| 98 |
+
outputs = self.model(**tokenized_inputs)
|
| 99 |
+
logits = outputs.logits
|
| 100 |
+
|
| 101 |
+
# Apply Softmax to get probabilities
|
| 102 |
+
probabilities = torch.softmax(logits, dim=-1)
|
| 103 |
+
|
| 104 |
+
# Move probabilities to CPU and convert to list
|
| 105 |
+
# Squeeze or index [0] if processing single pairs (typical for endpoints)
|
| 106 |
+
scores = probabilities.cpu().numpy()[0].tolist()
|
| 107 |
+
|
| 108 |
+
# --- Format Output ---
|
| 109 |
+
# Pair labels with their corresponding scores
|
| 110 |
+
result = [{"label": label, "score": score} for label, score in zip(self.label_names, scores)]
|
| 111 |
+
|
| 112 |
+
return result
|
| 113 |
+
|
| 114 |
+
except Exception as e:
|
| 115 |
+
print(f"Error during model inference: {e}")
|
| 116 |
+
# Consider logging the full traceback here in a real deployment
|
| 117 |
+
# import traceback
|
| 118 |
+
# traceback.print_exc()
|
| 119 |
+
return {"error": f"Model inference failed: {e}"}
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers>=4.20.0 # Use a recent version
|
| 2 |
+
torch>=1.9.0 # Compatible Torch version
|
| 3 |
+
sentencepiece # Often required by tokenizers
|
| 4 |
+
protobuf # Sometimes needed as a dependency
|