OMG-LLaVA / omg_llava /engine /evaluate_chat_hook.py
zhangtao-whu's picture
Upload folder using huggingface_hub
f6d075a verified
import torch
from xtuner.dataset.utils import expand2square
from xtuner.model.utils import prepare_inputs_labels_for_multimodal
from xtuner.utils import (DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)
import warnings
from mmengine.utils.misc import get_object_from_string
from transformers import GenerationConfig, StoppingCriteriaList
from xtuner.dataset.utils import load_image
from xtuner.registry import BUILDER
from xtuner.utils import StopWordStoppingCriteria
from xtuner.engine.hooks import EvaluateChatHook
class EvaluateChatHook_withSpecialTokens(EvaluateChatHook):
priority = 'LOW'
def __init__(self,
tokenizer,
evaluation_inputs,
evaluation_images=None,
image_processor=None,
system='',
prompt_template=None,
every_n_iters=None,
max_new_tokens=600,
stop_word=None,
stop_words=[]):
self.evaluation_inputs = evaluation_inputs
if isinstance(self.evaluation_inputs, str):
self.evaluation_inputs = [self.evaluation_inputs]
self.evaluation_images = evaluation_images
if isinstance(self.evaluation_images, str):
self.evaluation_images = [self.evaluation_images]
if self.evaluation_images is not None:
assert len(
self.evaluation_images) in [1, len(self.evaluation_inputs)]
if len(self.evaluation_images) == 1:
self.evaluation_images = [self.evaluation_images[0]] * len(
self.evaluation_inputs)
self.evaluation_images = [
load_image(img) for img in self.evaluation_images
]
if prompt_template is None:
instruction = '{input}'
else:
if isinstance(prompt_template, str): # for resume
prompt_template = get_object_from_string(prompt_template)
instruction = prompt_template.get('INSTRUCTION', '{input}')
if system != '':
system = prompt_template.get(
'SYSTEM', '{system}\n').format(system=system)
stop_words += prompt_template.get('STOP_WORDS', [])
if stop_word is not None:
# TODO: deprecation, v0.3.0
warnings.warn(
('The `stop_word` argument is deprecated and will be removed '
'in v0.3.0, use `stop_words` instead.'), DeprecationWarning)
stop_words.append(stop_word)
self.instruction = instruction
self.system = system
self.every_n_iters = every_n_iters
self.max_new_tokens = max_new_tokens
self.tokenizer = BUILDER.build(tokenizer)
self._add_special_tokens()
if image_processor is not None:
self.image_processor = BUILDER.build(image_processor)
self.stop_criteria = StoppingCriteriaList()
# default generation config
self.gen_config = GenerationConfig(
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=0.1,
top_p=0.75,
top_k=40,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id
if self.tokenizer.pad_token_id is not None else
self.tokenizer.eos_token_id,
)
self.stop_criteria = StoppingCriteriaList()
for word in stop_words:
self.stop_criteria.append(
StopWordStoppingCriteria(self.tokenizer, word))
self.is_first_run = True
def _add_special_tokens(self):
assert hasattr(self, "tokenizer")
# Adding special tokens for pixel grounding
segmentation_tokens = ['[SEG]']
# Adding tokens for GCG
phrase_tokens = ['<p>', '</p>']
# add for visual prompt
region_tokens = ['<region>']
point_tokens = ['<mark>']
special_tokens = segmentation_tokens + phrase_tokens + region_tokens + point_tokens
self.tokenizer.add_tokens(special_tokens, special_tokens=True)
return
def _eval_images(self,
runner,
model,
device,
max_new_tokens=None,
save_eval_output=False):
if save_eval_output:
eval_outputs = []
for sample_image, sample_input in zip(self.evaluation_images,
self.evaluation_inputs):
image = expand2square(
sample_image,
tuple(int(x * 255) for x in self.image_processor.image_mean))
image = self.image_processor.preprocess(
image, return_tensors='pt')['pixel_values'][0]
image = image.to(device)
sample_input = DEFAULT_IMAGE_TOKEN + '\n' + sample_input
inputs = (self.system + self.instruction).format(
input=sample_input, round=1, **runner.cfg)
chunk_encode = []
for idx, chunk in enumerate(inputs.split(DEFAULT_IMAGE_TOKEN)):
if idx == 0:
cur_encode = self.tokenizer.encode(chunk)
else:
cur_encode = self.tokenizer.encode(
chunk, add_special_tokens=False)
chunk_encode.append(cur_encode)
assert len(chunk_encode) == 2
input_ids = []
for idx, cur_chunk_encode in enumerate(chunk_encode):
input_ids.extend(cur_chunk_encode)
if idx != len(chunk_encode) - 1:
input_ids.append(IMAGE_TOKEN_INDEX)
input_ids = torch.tensor(input_ids).to(device)
visual_outputs = model.visual_encoder(
image.unsqueeze(0).to(model.visual_encoder.dtype),
output_hidden_states=True)
if isinstance(visual_outputs, list) or isinstance(visual_outputs, tuple)\
or isinstance(visual_outputs, torch.Tensor):
pixel_values = model.projector(visual_outputs)
else:
pixel_values = model.projector(
visual_outputs.hidden_states[model.visual_select_layer][:, 1:])
mm_inputs = prepare_inputs_labels_for_multimodal(
llm=model.llm,
input_ids=input_ids.unsqueeze(0),
pixel_values=pixel_values)
generation_output = model.generate(
**mm_inputs,
max_new_tokens=max_new_tokens,
generation_config=self.gen_config,
bos_token_id=self.tokenizer.bos_token_id,
stopping_criteria=self.stop_criteria)
generation_output = self.tokenizer.decode(generation_output[0])
runner.logger.info(f'Sample output:\n'
f'{inputs + generation_output}\n')
if save_eval_output:
eval_outputs.append(f'{inputs + generation_output}\n')
if save_eval_output:
self._save_eval_output(runner, eval_outputs)