Spaces:
Runtime error
Runtime error
update layout and add dev mode
Browse files- app.py +110 -32
- climategan_wrapper.py +20 -2
app.py
CHANGED
|
@@ -6,18 +6,19 @@ import gradio as gr
|
|
| 6 |
import googlemaps
|
| 7 |
from skimage import io
|
| 8 |
from urllib import parse
|
|
|
|
| 9 |
from climategan_wrapper import ClimateGAN
|
| 10 |
|
| 11 |
|
| 12 |
-
def predict(api_key):
|
| 13 |
def _predict(*args):
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
if len(args) == 1:
|
| 17 |
image = args[0]
|
|
|
|
| 18 |
else:
|
| 19 |
-
assert len(args) ==
|
| 20 |
-
image, place = args
|
| 21 |
|
| 22 |
if api_key and place:
|
| 23 |
geocode_result = gmaps.geocode(place)
|
|
@@ -27,8 +28,40 @@ def predict(api_key):
|
|
| 27 |
img_np = io.imread(static_map_url)
|
| 28 |
else:
|
| 29 |
img_np = image
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
return _predict
|
| 34 |
|
|
@@ -40,28 +73,73 @@ if __name__ == "__main__":
|
|
| 40 |
if api_key is not None:
|
| 41 |
gmaps = googlemaps.Client(key=api_key)
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
inputs = inputs = [gr.inputs.Image(label="Input Image")]
|
| 46 |
-
if api_key:
|
| 47 |
-
inputs += [gr.inputs.Textbox(label="Address or place name")]
|
| 48 |
|
| 49 |
-
gr.
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
gr.
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import googlemaps
|
| 7 |
from skimage import io
|
| 8 |
from urllib import parse
|
| 9 |
+
import numpy as np
|
| 10 |
from climategan_wrapper import ClimateGAN
|
| 11 |
|
| 12 |
|
| 13 |
+
def predict(cg: ClimateGAN, api_key):
|
| 14 |
def _predict(*args):
|
| 15 |
+
image = place = painter = None
|
| 16 |
+
if len(args) == 2:
|
|
|
|
| 17 |
image = args[0]
|
| 18 |
+
painter = args[1]
|
| 19 |
else:
|
| 20 |
+
assert len(args) == 3, "Unknown number of inputs {}".format(len(args))
|
| 21 |
+
image, place, painter = args
|
| 22 |
|
| 23 |
if api_key and place:
|
| 24 |
geocode_result = gmaps.geocode(place)
|
|
|
|
| 28 |
img_np = io.imread(static_map_url)
|
| 29 |
else:
|
| 30 |
img_np = image
|
| 31 |
+
output_dict = cg.infer_single(img_np, painter)
|
| 32 |
+
|
| 33 |
+
input_image = output_dict["input"]
|
| 34 |
+
masked_input = output_dict["masked_input"]
|
| 35 |
+
wildfire = output_dict["wildfire"]
|
| 36 |
+
smog = output_dict["smog"]
|
| 37 |
+
|
| 38 |
+
climategan_flood = output_dict.get(
|
| 39 |
+
"climategan_flood",
|
| 40 |
+
np.ones(input_image.shape) * 255,
|
| 41 |
+
)
|
| 42 |
+
stable_flood = output_dict.get(
|
| 43 |
+
"stable_flood",
|
| 44 |
+
np.ones(input_image.shape) * 255,
|
| 45 |
+
)
|
| 46 |
+
stable_copy_flood = output_dict.get(
|
| 47 |
+
"stable_copy_flood",
|
| 48 |
+
np.ones(input_image.shape) * 255,
|
| 49 |
+
)
|
| 50 |
+
concat = output_dict.get(
|
| 51 |
+
"concat",
|
| 52 |
+
np.ones(input_image.shape) * 255,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
return (
|
| 56 |
+
input_image,
|
| 57 |
+
masked_input,
|
| 58 |
+
climategan_flood,
|
| 59 |
+
stable_flood,
|
| 60 |
+
stable_copy_flood,
|
| 61 |
+
concat,
|
| 62 |
+
wildfire,
|
| 63 |
+
smog,
|
| 64 |
+
)
|
| 65 |
|
| 66 |
return _predict
|
| 67 |
|
|
|
|
| 73 |
if api_key is not None:
|
| 74 |
gmaps = googlemaps.Client(key=api_key)
|
| 75 |
|
| 76 |
+
cg = ClimateGAN(model_path="config/model/masker", dev_mode=True)
|
| 77 |
+
cg._setup_stable_diffusion()
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
with gr.Blocks() as blocks:
|
| 80 |
+
with gr.Row():
|
| 81 |
+
with gr.Column():
|
| 82 |
+
gr.Markdown("# ClimateGAN: Visualize Climate Change")
|
| 83 |
+
gr.HTML(
|
| 84 |
+
'Climate change does not impact everyone equally. This Space shows the effects of the climate emergency, "one address at a time". Visit the original experience at <a href="https://thisclimatedoesnotexist.com/">ThisClimateDoesNotExist.com</a>.<br>Enter an address or place name, and ClimateGAN will generate images showing how the location could be impacted by flooding, wildfires, or smog.' # noqa: E501
|
| 85 |
+
)
|
| 86 |
+
with gr.Column():
|
| 87 |
+
gr.HTML(
|
| 88 |
+
"<p style='text-align: center'>This project is an unofficial clone of <a href='https://thisclimatedoesnotexist.com/'>ThisClimateDoesNotExist</a> | <a href='https://github.com/cc-ai/climategan'>ClimateGAN GitHub Repo</a></p>" # noqa: E501
|
| 89 |
+
)
|
| 90 |
+
with gr.Row():
|
| 91 |
+
gr.Markdown("## Inputs")
|
| 92 |
+
with gr.Row():
|
| 93 |
+
with gr.Column():
|
| 94 |
+
inputs = [gr.inputs.Image(label="Input Image")]
|
| 95 |
+
with gr.Column():
|
| 96 |
+
if api_key:
|
| 97 |
+
inputs += [gr.inputs.Textbox(label="Address or place name")]
|
| 98 |
+
inputs += [
|
| 99 |
+
gr.inputs.Dropdown(
|
| 100 |
+
choices=[
|
| 101 |
+
"ClimateGAN Painter",
|
| 102 |
+
"Stable Diffusion Painter",
|
| 103 |
+
"Both",
|
| 104 |
+
],
|
| 105 |
+
label="Choose Flood Painter",
|
| 106 |
+
default="Both",
|
| 107 |
+
)
|
| 108 |
+
]
|
| 109 |
+
btn = gr.Button("See for yourself!", label="Run")
|
| 110 |
+
with gr.Row():
|
| 111 |
+
gr.Markdown("## Outputs")
|
| 112 |
+
with gr.Row():
|
| 113 |
+
outputs = []
|
| 114 |
+
outputs.append(
|
| 115 |
+
gr.outputs.Image(type="numpy", label="Original image"),
|
| 116 |
+
)
|
| 117 |
+
outputs.append(
|
| 118 |
+
gr.outputs.Image(type="numpy", label="Masked input image"),
|
| 119 |
+
)
|
| 120 |
+
with gr.Row():
|
| 121 |
+
outputs.append(
|
| 122 |
+
gr.outputs.Image(type="numpy", label="ClimateGAN-Flooded image"),
|
| 123 |
+
)
|
| 124 |
+
outputs.append(
|
| 125 |
+
gr.outputs.Image(type="numpy", label="Stable Diffusion-Flooded image"),
|
| 126 |
+
)
|
| 127 |
+
outputs.append(
|
| 128 |
+
gr.outputs.Image(
|
| 129 |
+
type="numpy",
|
| 130 |
+
label="Stable Diffusion-Flooded image (restricted to masked area)",
|
| 131 |
+
)
|
| 132 |
+
),
|
| 133 |
+
with gr.Row():
|
| 134 |
+
outputs.append(
|
| 135 |
+
gr.outputs.Image(type="numpy", label="Comparison of previous images"),
|
| 136 |
+
)
|
| 137 |
+
with gr.Row():
|
| 138 |
+
outputs.append(
|
| 139 |
+
gr.outputs.Image(type="numpy", label="Wildfire"),
|
| 140 |
+
)
|
| 141 |
+
outputs.append(
|
| 142 |
+
gr.outputs.Image(type="numpy", label="Smog"),
|
| 143 |
+
)
|
| 144 |
+
btn.click(predict(cg, api_key), inputs=inputs, outputs=outputs)
|
| 145 |
+
blocks.launch()
|
climategan_wrapper.py
CHANGED
|
@@ -115,7 +115,7 @@ def to_m1_p1(img):
|
|
| 115 |
|
| 116 |
# No need to do any timing in this, since it's just for the HF Space
|
| 117 |
class ClimateGAN:
|
| 118 |
-
def __init__(self, model_path) -> None:
|
| 119 |
"""
|
| 120 |
A wrapper for the ClimateGAN model that you can use to generate
|
| 121 |
events from images or folders containing images.
|
|
@@ -125,6 +125,10 @@ class ClimateGAN:
|
|
| 125 |
"""
|
| 126 |
torch.set_grad_enabled(False)
|
| 127 |
self.target_size = 640
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
self.trainer = Trainer.resume_from_path(
|
| 129 |
model_path,
|
| 130 |
setup=True,
|
|
@@ -132,7 +136,6 @@ class ClimateGAN:
|
|
| 132 |
new_exp=None,
|
| 133 |
)
|
| 134 |
self.trainer.G.half()
|
| 135 |
-
self._stable_diffusion_is_setup = False
|
| 136 |
|
| 137 |
def _setup_stable_diffusion(self):
|
| 138 |
"""
|
|
@@ -140,6 +143,9 @@ class ClimateGAN:
|
|
| 140 |
Make sure you have accepted the license on the model's card
|
| 141 |
https://huggingface.co/CompVis/stable-diffusion-v1-4
|
| 142 |
"""
|
|
|
|
|
|
|
|
|
|
| 143 |
try:
|
| 144 |
self.sdip_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
| 145 |
"runwayml/stable-diffusion-inpainting",
|
|
@@ -216,6 +222,18 @@ class ClimateGAN:
|
|
| 216 |
dict: a dictionary containing the output images {k: HxWxC}. C is omitted
|
| 217 |
for masks (HxW).
|
| 218 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
image_array = (
|
| 220 |
np.array(Image.open(orig_image))
|
| 221 |
if isinstance(orig_image, str)
|
|
|
|
| 115 |
|
| 116 |
# No need to do any timing in this, since it's just for the HF Space
|
| 117 |
class ClimateGAN:
|
| 118 |
+
def __init__(self, model_path, dev_mode=False) -> None:
|
| 119 |
"""
|
| 120 |
A wrapper for the ClimateGAN model that you can use to generate
|
| 121 |
events from images or folders containing images.
|
|
|
|
| 125 |
"""
|
| 126 |
torch.set_grad_enabled(False)
|
| 127 |
self.target_size = 640
|
| 128 |
+
self._stable_diffusion_is_setup = False
|
| 129 |
+
self.dev_mode = dev_mode
|
| 130 |
+
if self.dev_mode:
|
| 131 |
+
return
|
| 132 |
self.trainer = Trainer.resume_from_path(
|
| 133 |
model_path,
|
| 134 |
setup=True,
|
|
|
|
| 136 |
new_exp=None,
|
| 137 |
)
|
| 138 |
self.trainer.G.half()
|
|
|
|
| 139 |
|
| 140 |
def _setup_stable_diffusion(self):
|
| 141 |
"""
|
|
|
|
| 143 |
Make sure you have accepted the license on the model's card
|
| 144 |
https://huggingface.co/CompVis/stable-diffusion-v1-4
|
| 145 |
"""
|
| 146 |
+
if self.dev_mode:
|
| 147 |
+
return
|
| 148 |
+
|
| 149 |
try:
|
| 150 |
self.sdip_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
| 151 |
"runwayml/stable-diffusion-inpainting",
|
|
|
|
| 222 |
dict: a dictionary containing the output images {k: HxWxC}. C is omitted
|
| 223 |
for masks (HxW).
|
| 224 |
"""
|
| 225 |
+
if self.dev_mode:
|
| 226 |
+
return {
|
| 227 |
+
"input": np.random.randint(0, 255, (640, 640, 3)),
|
| 228 |
+
"mask": np.random.randint(0, 255, (640, 640)),
|
| 229 |
+
"masked_input": np.random.randint(0, 255, (640, 640, 3)),
|
| 230 |
+
"climategan_flood": np.random.randint(0, 255, (640, 640, 3)),
|
| 231 |
+
"stable_flood": np.random.randint(0, 255, (640, 640, 3)),
|
| 232 |
+
"stable_copy_flood": np.random.randint(0, 255, (640, 640, 3)),
|
| 233 |
+
"concat": np.random.randint(0, 255, (640, 640 * 5, 3)),
|
| 234 |
+
"smog": np.random.randint(0, 255, (640, 640, 3)),
|
| 235 |
+
"wildfire": np.random.randint(0, 255, (640, 640, 3)),
|
| 236 |
+
}
|
| 237 |
image_array = (
|
| 238 |
np.array(Image.open(orig_image))
|
| 239 |
if isinstance(orig_image, str)
|