t2m / src /app /services /video_service.py
thanhkt's picture
implement core api
50a7bf0
"""
Video generation service for managing video creation jobs and operations.
This service handles the business logic for video generation requests,
job queue management, progress tracking, and integration with the
multi-agent video generation pipeline.
"""
import logging
import uuid
from datetime import datetime, timedelta
from typing import Optional, Dict, Any, List
from redis.asyncio import Redis
from ..models.job import (
Job, JobCreateRequest, JobStatus, JobType, JobProgress,
JobConfiguration, JobError, JobMetrics, BatchJobCreateRequest
)
from ..models.video import VideoMetadata, VideoStatus
from ..core.redis import RedisKeyManager, redis_json_get, redis_json_set
logger = logging.getLogger(__name__)
class VideoService:
"""
Service class for video generation operations.
Handles job creation, status management, progress tracking,
and integration with the video generation pipeline.
"""
def __init__(self, redis_client: Redis):
self.redis_client = redis_client
async def create_video_job(
self,
request: JobCreateRequest,
user_id: str
) -> Job:
"""
Create a new video generation job.
Args:
request: Job creation request with configuration
user_id: ID of the user creating the job
Returns:
Created Job instance
Raises:
Exception: If job creation fails
"""
try:
# Generate unique job ID
job_id = str(uuid.uuid4())
# Calculate estimated completion time based on quality and complexity
estimated_completion = self._calculate_estimated_completion(
request.configuration
)
# Create job progress with initial values
progress = JobProgress(
percentage=0.0,
current_stage="queued",
estimated_completion=estimated_completion
)
# Create job instance
job = Job(
id=job_id,
user_id=user_id,
job_type=JobType.VIDEO_GENERATION,
priority=request.priority,
configuration=request.configuration,
status=JobStatus.QUEUED,
progress=progress,
created_at=datetime.utcnow(),
updated_at=datetime.utcnow()
)
# Store job in Redis
await self._store_job_in_redis(job)
# Add job to processing queue
await self._enqueue_job_for_processing(job_id, request.priority.value)
logger.info(
"Created video generation job",
job_id=job_id,
user_id=user_id,
topic=request.configuration.topic,
quality=request.configuration.quality,
estimated_completion=estimated_completion
)
return job
except Exception as e:
logger.error(
"Failed to create video generation job",
user_id=user_id,
error=str(e),
exc_info=True
)
raise
async def create_batch_jobs(
self,
request: BatchJobCreateRequest,
user_id: str
) -> List[Job]:
"""
Create multiple video generation jobs as a batch.
Args:
request: Batch job creation request
user_id: ID of the user creating the jobs
Returns:
List of created Job instances
Raises:
Exception: If batch job creation fails
"""
try:
batch_id = str(uuid.uuid4())
jobs = []
for job_config in request.jobs:
# Create individual job request
job_request = JobCreateRequest(
configuration=job_config,
priority=request.batch_priority
)
# Create job
job = await self.create_video_job(job_request, user_id)
# Set batch information
job.batch_id = batch_id
job.job_type = JobType.BATCH_VIDEO_GENERATION
jobs.append(job)
logger.info(
"Created batch video generation jobs",
batch_id=batch_id,
job_count=len(jobs),
user_id=user_id
)
return jobs
except Exception as e:
logger.error(
"Failed to create batch video generation jobs",
user_id=user_id,
error=str(e),
exc_info=True
)
raise
async def get_job_status(self, job_id: str) -> Optional[Job]:
"""
Get current job status and information.
Args:
job_id: Unique job identifier
Returns:
Job instance or None if not found
"""
try:
job_key = RedisKeyManager.job_key(job_id)
job_data = await redis_json_get(self.redis_client, job_key)
if not job_data:
return None
return Job(**job_data)
except Exception as e:
logger.error(
"Failed to get job status",
job_id=job_id,
error=str(e),
exc_info=True
)
return None
async def update_job_status(
self,
job_id: str,
status: JobStatus,
progress_percentage: Optional[float] = None,
current_stage: Optional[str] = None,
error_info: Optional[Dict[str, Any]] = None,
metrics: Optional[Dict[str, Any]] = None
) -> bool:
"""
Update job status and progress information.
Args:
job_id: Unique job identifier
status: New job status
progress_percentage: Progress percentage (0-100)
current_stage: Current processing stage
error_info: Error information if job failed
metrics: Performance metrics
Returns:
True if update successful, False otherwise
"""
try:
# Get current job
job = await self.get_job_status(job_id)
if not job:
logger.warning(f"Job {job_id} not found for status update")
return False
# Update job status
job.status = status
job.updated_at = datetime.utcnow()
# Update progress if provided
if progress_percentage is not None:
job.progress.percentage = progress_percentage
if current_stage:
job.progress.current_stage = current_stage
if current_stage not in job.progress.stages_completed:
job.progress.stages_completed.append(current_stage)
# Handle completion
if status in [JobStatus.COMPLETED, JobStatus.FAILED, JobStatus.CANCELLED]:
job.completed_at = datetime.utcnow()
if status == JobStatus.COMPLETED:
job.progress.percentage = 100.0
# Handle processing start
if status == JobStatus.PROCESSING and not job.started_at:
job.started_at = datetime.utcnow()
# Update error information
if error_info and status == JobStatus.FAILED:
job.error = JobError(
error_code=error_info.get("error_code", "UNKNOWN_ERROR"),
error_message=error_info.get("error_message", "Unknown error occurred"),
error_details=error_info.get("error_details"),
stack_trace=error_info.get("stack_trace")
)
# Update metrics
if metrics:
if not job.metrics:
job.metrics = JobMetrics()
for key, value in metrics.items():
if hasattr(job.metrics, key):
setattr(job.metrics, key, value)
# Save updated job to Redis
job_key = RedisKeyManager.job_key(job_id)
await redis_json_set(self.redis_client, job_key, job.dict())
# Update status cache
status_key = RedisKeyManager.job_status_key(job_id)
await self.redis_client.set(status_key, status.value, ex=300)
logger.info(
"Updated job status",
job_id=job_id,
status=status,
progress=job.progress.percentage,
stage=current_stage
)
return True
except Exception as e:
logger.error(
"Failed to update job status",
job_id=job_id,
status=status,
error=str(e),
exc_info=True
)
return False
async def cancel_job(self, job_id: str) -> bool:
"""
Cancel a video generation job.
Args:
job_id: Unique job identifier
Returns:
True if cancellation successful, False otherwise
"""
try:
job = await self.get_job_status(job_id)
if not job:
return False
# Check if job can be cancelled
if not job.can_be_cancelled:
logger.warning(
f"Job {job_id} cannot be cancelled. Current status: {job.status}"
)
return False
# Update job status to cancelled
success = await self.update_job_status(
job_id=job_id,
status=JobStatus.CANCELLED,
current_stage="cancelled"
)
if success:
# Remove from processing queue if still queued
await self.redis_client.lrem(RedisKeyManager.JOB_QUEUE, 0, job_id)
logger.info(f"Job {job_id} cancelled successfully")
return success
except Exception as e:
logger.error(
"Failed to cancel job",
job_id=job_id,
error=str(e),
exc_info=True
)
return False
async def create_video_metadata(
self,
job_id: str,
filename: str,
file_path: str,
file_size: int,
duration_seconds: Optional[float] = None,
width: Optional[int] = None,
height: Optional[int] = None,
format: str = "mp4"
) -> VideoMetadata:
"""
Create video metadata for a completed job.
Args:
job_id: Associated job ID
filename: Video filename
file_path: Path to video file
file_size: File size in bytes
duration_seconds: Video duration
width: Video width in pixels
height: Video height in pixels
format: Video format
Returns:
VideoMetadata instance
"""
try:
# Get job to extract user_id
job = await self.get_job_status(job_id)
if not job:
raise ValueError(f"Job {job_id} not found")
# Create video metadata
video_metadata = VideoMetadata(
id=str(uuid.uuid4()),
job_id=job_id,
user_id=job.user_id,
filename=filename,
file_path=file_path,
file_size=file_size,
duration_seconds=duration_seconds,
width=width,
height=height,
format=format,
status=VideoStatus.READY,
created_at=datetime.utcnow(),
processed_at=datetime.utcnow()
)
# Store video metadata in Redis
video_key = RedisKeyManager.video_key(f"job_{job_id}")
await redis_json_set(self.redis_client, video_key, video_metadata.dict())
logger.info(
"Created video metadata",
job_id=job_id,
video_id=video_metadata.id,
filename=filename,
file_size=file_size
)
return video_metadata
except Exception as e:
logger.error(
"Failed to create video metadata",
job_id=job_id,
filename=filename,
error=str(e),
exc_info=True
)
raise
def _calculate_estimated_completion(
self,
configuration: JobConfiguration
) -> datetime:
"""
Calculate estimated completion time based on job configuration.
Args:
configuration: Job configuration
Returns:
Estimated completion datetime
"""
# Base processing time in minutes
base_time = 5
# Adjust based on quality
quality_multipliers = {
"low": 0.5,
"medium": 1.0,
"high": 1.5,
"ultra": 2.0
}
quality_multiplier = quality_multipliers.get(
configuration.quality.value, 1.0
)
# Adjust based on content complexity (rough estimate)
content_length = len(configuration.topic) + len(configuration.context)
complexity_multiplier = 1.0 + (content_length / 1000) # +1 minute per 1000 chars
# Adjust for RAG usage
rag_multiplier = 1.3 if configuration.use_rag else 1.0
# Calculate total estimated time
estimated_minutes = base_time * quality_multiplier * complexity_multiplier * rag_multiplier
return datetime.utcnow() + timedelta(minutes=estimated_minutes)
async def get_queue_length(self) -> int:
"""
Get current job queue length.
Returns:
Number of jobs in queue
"""
try:
return await self.redis_client.llen(RedisKeyManager.JOB_QUEUE)
except Exception as e:
logger.error(f"Failed to get queue length: {e}")
return 0
async def get_user_jobs(
self,
user_id: str,
limit: int = 10,
offset: int = 0
) -> List[Job]:
"""
Get jobs for a specific user.
Args:
user_id: User ID
limit: Maximum number of jobs to return
offset: Number of jobs to skip
Returns:
List of Job instances
"""
try:
# Get user's job IDs
user_jobs_key = RedisKeyManager.user_jobs_key(user_id)
job_ids = await self.redis_client.smembers(user_jobs_key)
if not job_ids:
return []
# Get job data for each ID
jobs = []
for job_id in list(job_ids)[offset:offset + limit]:
job = await self.get_job_status(job_id)
if job:
jobs.append(job)
# Sort by creation date (newest first)
jobs.sort(key=lambda x: x.created_at, reverse=True)
return jobs
except Exception as e:
logger.error(
"Failed to get user jobs",
user_id=user_id,
error=str(e),
exc_info=True
)
return []
async def _store_job_in_redis(self, job: Job) -> None:
"""
Store job data in Redis with proper indexing.
Args:
job: Job instance to store
"""
# Store job data
job_key = RedisKeyManager.job_key(job.id)
await redis_json_set(self.redis_client, job_key, job.dict())
# Add to user's job index
user_jobs_key = RedisKeyManager.user_jobs_key(job.user_id)
await self.redis_client.sadd(user_jobs_key, job.id)
# Set status cache
status_key = RedisKeyManager.job_status_key(job.id)
await self.redis_client.set(status_key, job.status.value, ex=300)
async def _enqueue_job_for_processing(self, job_id: str, priority: str) -> None:
"""
Add job to the processing queue based on priority.
Args:
job_id: Job ID to enqueue
priority: Job priority level
"""
if priority == "urgent":
# Add to front of queue for urgent jobs
await self.redis_client.lpush(RedisKeyManager.JOB_QUEUE, job_id)
elif priority == "high":
# Add near front for high priority jobs
queue_length = await self.redis_client.llen(RedisKeyManager.JOB_QUEUE)
insert_position = min(queue_length // 4, 10)
if insert_position == 0:
await self.redis_client.lpush(RedisKeyManager.JOB_QUEUE, job_id)
else:
await self.redis_client.rpush(RedisKeyManager.JOB_QUEUE, job_id)
else:
# Normal and low priority jobs go to the end
await self.redis_client.rpush(RedisKeyManager.JOB_QUEUE, job_id)
async def process_job_queue(self, max_concurrent_jobs: int = 5) -> None:
"""
Process jobs from the queue with concurrency control.
Args:
max_concurrent_jobs: Maximum number of concurrent jobs to process
"""
try:
# Check current processing jobs
processing_key = "queue:processing"
current_processing = await self.redis_client.scard(processing_key)
if current_processing >= max_concurrent_jobs:
logger.info(f"Max concurrent jobs ({max_concurrent_jobs}) reached")
return
# Get next job from queue
result = await self.redis_client.blpop(RedisKeyManager.JOB_QUEUE, timeout=1)
if result:
queue_name, job_id = result
# Mark job as processing
await self.redis_client.sadd(processing_key, job_id)
# Update job status
await self.update_job_status(
job_id=job_id,
status=JobStatus.PROCESSING,
current_stage="initializing"
)
# Trigger video generation pipeline
await self._trigger_video_generation_pipeline(job_id)
logger.info(f"Started processing job {job_id}")
except Exception as e:
logger.error(f"Failed to process job queue: {e}", exc_info=True)
async def _trigger_video_generation_pipeline(self, job_id: str) -> None:
"""
Trigger the multi-agent video generation pipeline for a job.
Args:
job_id: Job ID to process
"""
try:
# Get job details
job = await self.get_job_status(job_id)
if not job:
logger.error(f"Job {job_id} not found for pipeline trigger")
return
# Create pipeline message
pipeline_message = {
"job_id": job_id,
"user_id": job.user_id,
"configuration": job.configuration.dict(),
"priority": job.priority.value,
"created_at": job.created_at.isoformat()
}
# Send to pipeline queue (this would integrate with your existing pipeline)
pipeline_queue_key = "pipeline:video_generation"
await redis_json_set(
self.redis_client,
f"{pipeline_queue_key}:{job_id}",
pipeline_message,
ex=3600 # Expire after 1 hour if not processed
)
# Notify pipeline workers (using pub/sub)
await self.redis_client.publish("pipeline:new_job", job_id)
logger.info(f"Triggered video generation pipeline for job {job_id}")
except Exception as e:
logger.error(f"Failed to trigger pipeline for job {job_id}: {e}", exc_info=True)
# Mark job as failed
await self.update_job_status(
job_id=job_id,
status=JobStatus.FAILED,
error_info={
"error_code": "PIPELINE_TRIGGER_FAILED",
"error_message": f"Failed to trigger video generation pipeline: {str(e)}"
}
)