File size: 44,377 Bytes
be5872f b54a19e be5872f 8fe40e4 be5872f c640bc5 9925113 be5872f c640bc5 be5872f c640bc5 be5872f c640bc5 8fe40e4 c640bc5 8fe40e4 be5872f c640bc5 be5872f c640bc5 be5872f 8fe40e4 be5872f 8fe40e4 be5872f 8fe40e4 be5872f c640bc5 ed7a9c3 c640bc5 be5872f c640bc5 be5872f b54a19e be5872f b54a19e be5872f b54a19e be5872f b54a19e be5872f c640bc5 be5872f ed7a9c3 be5872f c640bc5 be5872f c640bc5 be5872f c640bc5 be5872f b54a19e be5872f b54a19e be5872f b54a19e be5872f b54a19e be5872f b54a19e be5872f b54a19e be5872f b54a19e be5872f b54a19e be5872f b54a19e be5872f b54a19e be5872f b54a19e be5872f 8fe40e4 b54a19e be5872f d7172c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 |
import os
import gradio as gr
import asyncio
import uuid
import threading
import subprocess
import shutil
from datetime import datetime
import logging
import traceback
import re
from typing import Dict, List, Optional
from mllm_tools.litellm import LiteLLMWrapper
from src.config.config import Config
from generate_video import EnhancedVideoGenerator, VideoGenerationConfig, allowed_models
from provider import provider_manager
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("gradio_app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Create necessary directories
os.makedirs("thumbnails", exist_ok=True)
# Global dictionary to track job status
job_status = {}
# Default model setting - simplified to use GPT-4o-mini for all operations
DEFAULT_MODEL = "openai/gpt-4o-mini"
def cancel_job(job_id):
"""Cancel a running job."""
if job_id and job_id in job_status:
if job_status[job_id]['status'] in ['pending', 'initializing', 'planning', 'running']:
job_status[job_id]['status'] = 'cancelled'
job_status[job_id]['message'] = 'Job cancelled by user'
return f"Job {job_id} has been cancelled"
return "Job not found or cannot be cancelled"
def delete_job(job_id):
"""Delete a job from history."""
if job_id and job_id in job_status:
# Remove output files if they exist
job = job_status[job_id]
if job.get('output_file') and os.path.exists(job['output_file']):
try:
# Remove the entire output directory for this job
output_dir = os.path.dirname(job['output_file'])
shutil.rmtree(output_dir, ignore_errors=True)
except Exception as e:
logger.error(f"Error removing output files: {e}")
# Remove thumbnail
if job.get('thumbnail') and os.path.exists(job['thumbnail']):
try:
os.remove(job['thumbnail'])
except Exception as e:
logger.error(f"Error removing thumbnail: {e}")
# Remove from job status
del job_status[job_id]
return f"Job {job_id} deleted successfully"
return "Job not found"
def get_job_statistics():
"""Get statistics about jobs."""
total_jobs = len(job_status)
completed_jobs = sum(1 for job in job_status.values() if job.get('status') == 'completed')
failed_jobs = sum(1 for job in job_status.values() if job.get('status') == 'failed')
running_jobs = sum(1 for job in job_status.values() if job.get('status') in ['pending', 'initializing', 'planning', 'running'])
return {
'total': total_jobs,
'completed': completed_jobs,
'failed': failed_jobs,
'running': running_jobs
}
def init_video_generator(params):
"""Initialize the EnhancedVideoGenerator with the given parameters."""
model_name = params.get('model', DEFAULT_MODEL)
helper_model_name = params.get('helper_model', DEFAULT_MODEL)
verbose = params.get('verbose', True) # Set verbose to True by default for better debugging
max_scene_concurrency = params.get('max_scene_concurrency', 1)
# Create configuration for the enhanced video generator
config = VideoGenerationConfig(
planner_model=model_name,
scene_model=model_name,
helper_model=helper_model_name,
output_dir=params.get('output_dir', Config.OUTPUT_DIR),
verbose=verbose,
use_rag=params.get('use_rag', False),
use_context_learning=params.get('use_context_learning', False),
context_learning_path=params.get('context_learning_path', Config.CONTEXT_LEARNING_PATH),
chroma_db_path=params.get('chroma_db_path', Config.CHROMA_DB_PATH),
manim_docs_path=params.get('manim_docs_path', Config.MANIM_DOCS_PATH),
embedding_model=params.get('embedding_model', Config.EMBEDDING_MODEL),
use_visual_fix_code=params.get('use_visual_fix_code', True), # Enable visual fix code by default
use_langfuse=params.get('use_langfuse', False),
max_scene_concurrency=max_scene_concurrency,
max_retries=params.get('max_retries', 3)
)
# Initialize EnhancedVideoGenerator
video_generator = EnhancedVideoGenerator(config)
return video_generator
async def process_video_generation(job_id, params):
"""Process video generation asynchronously."""
try:
# Update job status
job_status[job_id]['status'] = 'initializing'
job_status[job_id]['progress'] = 5
job_status[job_id]['message'] = 'Initializing video generator...'
# Initialize video generator
video_generator = init_video_generator(params)
# Extract video generation parameters
topic = params.get('topic')
description = params.get('description')
max_retries = int(params.get('max_retries', 3))
only_plan = params.get('only_plan', False)
# Log job start
logger.info(f"Starting job {job_id} for topic: {topic}")
job_status[job_id]['status'] = 'planning'
job_status[job_id]['progress'] = 10
job_status[job_id]['message'] = 'Planning video scenes...'
# Generate video pipeline
start_time = datetime.now()
logger.info(f"Running generate_video_pipeline for topic: {topic}")
# Create an event loop for the async process
def update_progress_callback(progress, message):
job_status[job_id]['progress'] = progress
job_status[job_id]['message'] = message
logger.info(f"Job {job_id} progress: {progress}% - {message}")
# Start a background task to periodically update progress
async def progress_update_task():
stages = [
(15, 'Creating scene outline...'),
(25, 'Generating implementation plans...'),
(35, 'Generating code for scenes...'),
(45, 'Compiling Manim code...'),
(60, 'Rendering scenes...'),
(80, 'Combining videos...'),
(90, 'Finalizing video...')
]
for progress, message in stages:
update_progress_callback(progress, message)
await asyncio.sleep(5) # Wait between updates
# Stop updating if job is complete or failed
if job_status[job_id]['status'] in ['completed', 'failed']:
break
# Start progress update task
progress_task = asyncio.create_task(progress_update_task())
# Run the main video generation task with detailed logging
try:
logger.info(f"Starting video generation pipeline for job {job_id}")
update_progress_callback(15, 'Starting video generation pipeline...')
await video_generator.generate_video_pipeline(
topic=topic,
description=description,
only_plan=only_plan
)
logger.info(f"Video generation pipeline completed for job {job_id}")
except Exception as e:
logger.error(f"Error in video generation pipeline for job {job_id}: {str(e)}")
logger.error(traceback.format_exc())
raise
# Cancel progress update task
if not progress_task.done():
progress_task.cancel()
# Calculate processing time
end_time = datetime.now()
processing_time = (end_time - start_time).total_seconds()
# Get output file path
file_prefix = topic.lower()
file_prefix = re.sub(r'[^a-z0-9_]+', '_', file_prefix)
output_file = os.path.join(
params.get('output_dir', Config.OUTPUT_DIR),
file_prefix,
f"{file_prefix}_combined.mp4"
)
# Check if output file actually exists
if not os.path.exists(output_file):
alternative_output = None
# Look for any MP4 files that might have been generated
scene_dir = os.path.join(params.get('output_dir', Config.OUTPUT_DIR), file_prefix)
if os.path.exists(scene_dir):
for root, dirs, files in os.walk(scene_dir):
for file in files:
if file.endswith('.mp4'):
alternative_output = os.path.join(root, file)
logger.info(f"Combined video not found, but found alternative: {alternative_output}")
break
if alternative_output:
break
if alternative_output:
output_file = alternative_output
else:
logger.error(f"No video output file found for job {job_id}")
raise Exception("No video output was generated. Check Manim execution logs.")
# Create a thumbnail from the video if it exists
thumbnail_path = None
if os.path.exists(output_file):
thumbnail_path = os.path.join("thumbnails", f"{job_id}.jpg")
try:
import subprocess
result = subprocess.run([
'ffmpeg', '-i', output_file,
'-ss', '00:00:05', '-frames:v', '1',
thumbnail_path
], capture_output=True, text=True)
if result.returncode != 0:
logger.error(f"Error creating thumbnail: {result.stderr}")
thumbnail_path = None
except Exception as e:
logger.error(f"Error creating thumbnail: {str(e)}")
thumbnail_path = None
# Get scene snapshots
scene_snapshots = []
scene_dir = os.path.join(params.get('output_dir', Config.OUTPUT_DIR), file_prefix)
if os.path.exists(scene_dir):
for i in range(1, 10): # Check up to 10 possible scenes
scene_snapshot_dir = os.path.join(scene_dir, f"scene{i}")
if os.path.exists(scene_snapshot_dir):
img_files = [f for f in os.listdir(scene_snapshot_dir) if f.endswith('.png')]
if img_files:
img_path = os.path.join(scene_snapshot_dir, img_files[-1]) # Get the last image
scene_snapshots.append(img_path)
# Update job status to completed
job_status[job_id].update({
'status': 'completed',
'progress': 100,
'message': 'Video generation completed',
'output_file': output_file if os.path.exists(output_file) else None,
'processing_time': processing_time,
'thumbnail': thumbnail_path,
'scene_snapshots': scene_snapshots
})
logger.info(f"Job {job_id} completed successfully in {processing_time:.2f} seconds")
except Exception as e:
# Handle exceptions
error_msg = str(e)
stack_trace = traceback.format_exc()
logger.error(f"Error in job {job_id}: {error_msg}\n{stack_trace}")
job_status[job_id].update({
'status': 'failed',
'error': error_msg,
'stack_trace': stack_trace,
'message': f'Error: {error_msg[:100]}...' if len(error_msg) > 100 else f'Error: {error_msg}'
})
def start_async_job(job_id, params):
"""Start an async job in a separate thread."""
def run_async():
asyncio.run(process_video_generation(job_id, params))
thread = threading.Thread(target=run_async)
thread.daemon = True
thread.start()
return thread
def submit_job(topic, description, max_retries, use_rag, use_visual_fix_code, temperature, use_context_learning, verbose, max_scene_concurrency, api_key):
"""Submit a new video generation job."""
# Input validation
if not topic.strip():
return "β Error: Topic is required", None, gr.update(visible=False)
if not description.strip():
return "β Error: Description is required", None, gr.update(visible=False)
if len(topic.strip()) < 3:
return "β Error: Topic must be at least 3 characters long", None, gr.update(visible=False)
if len(description.strip()) < 10:
return "β Error: Description must be at least 10 characters long", None, gr.update(visible=False)
# Set default model
model = DEFAULT_MODEL
helper_model = DEFAULT_MODEL
# Validate API key
if not api_key or not api_key.strip():
return "β Error: Please enter your OpenAI API key", None, gr.update(visible=False)
try:
# Generate job ID
job_id = str(uuid.uuid4())
# Initialize job status
job_status[job_id] = {
'id': job_id,
'status': 'pending',
'topic': topic,
'description': description,
'model': model,
'start_time': datetime.now().isoformat(),
'progress': 0,
'message': 'Job submitted, waiting to start...'
}
# Prepare parameters with default configuration
params = {
'topic': topic,
'description': description,
'model': model,
'helper_model': helper_model,
'max_retries': max_retries,
'use_rag': use_rag,
'use_visual_fix_code': use_visual_fix_code,
'temperature': temperature,
'use_context_learning': use_context_learning,
'verbose': verbose,
'max_scene_concurrency': max_scene_concurrency,
'output_dir': Config.OUTPUT_DIR,
# Use OpenAI as default provider
'provider': 'openai',
'api_key': api_key.strip()
}
# Start job asynchronously
start_async_job(job_id, params)
return f"β
Job submitted successfully. Job ID: {job_id}", job_id, gr.update(visible=True)
except Exception as e:
logger.error(f"Error submitting job: {str(e)}")
return f"β Error: {str(e)}", None, gr.update(visible=False)
def check_job_status(job_id):
"""Check the status of a job."""
if not job_id or job_id not in job_status:
return {"status": "not_found", "message": "Job not found"}
return job_status[job_id]
def get_video_details(job_id):
"""Get details of a completed video job."""
if not job_id or job_id not in job_status:
return None, None, None, [], "Job not found"
job = job_status[job_id]
if job['status'] != 'completed':
return None, None, None, [], f"Video not ready. Current status: {job['status']}"
# Get video path, processing time, thumbnail and scene snapshots
video_path = job.get('output_file')
processing_time = job.get('processing_time', 0)
thumbnail = job.get('thumbnail')
scene_snapshots = job.get('scene_snapshots', [])
if not video_path or not os.path.exists(video_path):
return None, None, None, [], "Video file not found"
return video_path, processing_time, thumbnail, scene_snapshots, None
def get_job_list():
"""Get a list of all jobs."""
job_list = []
for job_id, job in job_status.items():
job_list.append({
'id': job_id,
'topic': job.get('topic', 'Unknown'),
'status': job.get('status', 'unknown'),
'start_time': job.get('start_time', ''),
'progress': job.get('progress', 0),
'message': job.get('message', '')
})
# Sort by start time, most recent first
job_list.sort(key=lambda x: x.get('start_time', ''), reverse=True)
return job_list
def format_status_message(job):
"""Format status message for display."""
if not job:
return "No job selected"
status = job.get('status', 'unknown')
progress = job.get('progress', 0)
message = job.get('message', '')
status_emoji = {
'pending': 'β³',
'initializing': 'π',
'planning': 'π§ ',
'running': 'βοΈ',
'completed': 'β
',
'failed': 'β',
'unknown': 'β'
}.get(status, 'β')
return f"{status_emoji} Status: {status.title()} ({progress}%)\n{message}"
def update_status_display(job_id):
"""Update the status display for a job."""
if not job_id:
return ("No job selected",
gr.update(value=None),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value=[]),
gr.update(visible=False),
gr.update(visible=False))
job = check_job_status(job_id)
status_message = format_status_message(job)
# Check if the job is completed to show the video
if job.get('status') == 'completed' and job.get('output_file') and os.path.exists(job.get('output_file')):
video_path = job.get('output_file')
video_vis = True
thumbnail = job.get('thumbnail')
scene_snapshots = job.get('scene_snapshots', [])
processing_time = job.get('processing_time', 0)
return (status_message,
gr.update(value=video_path),
gr.update(visible=video_vis),
gr.update(visible=thumbnail is not None, value=thumbnail),
gr.update(value=scene_snapshots),
gr.update(visible=True, value=f"β±οΈ Processing Time: {processing_time:.2f} seconds"),
gr.update(visible=job.get('status') in ['pending', 'initializing', 'planning', 'running']))
return (status_message,
gr.update(value=None),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value=[]),
gr.update(visible=False),
gr.update(visible=job.get('status') in ['pending', 'initializing', 'planning', 'running']))
# Create Gradio interface
with gr.Blocks(
title="Theory2Manim 3blue1brown Video Style Generator",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter")
),
css="""
.main-header {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 2rem;
border-radius: 1rem;
margin-bottom: 2rem;
}
.status-card {
border: 1px solid #e1e5e9;
border-radius: 0.5rem;
padding: 1rem;
background: #f8f9fa;
}
.metric-card {
border: 1px solid #e1e5e9;
border-radius: 0.5rem;
padding: 1rem;
text-align: center;
background: white;
}
.job-actions {
gap: 0.5rem;
}
"""
) as app:
# Header
with gr.Row():
with gr.Column():
gr.HTML("""
<div class="main-header">
<h1>π¬ Theory2Manim 3blue1brown Video Style Generator</h1>
<p>Transform mathematical and scientific concepts into engaging educational videos</p>
</div>
""")
gr.Markdown(
"β οΈ **Note:** Video generation typically takes **10β15 minutes** per request. "
"Each video may consume **700,000 to 1,000,000 tokens**. Please plan accordingly.",
)
# Statistics Dashboard
with gr.Row():
stats_total = gr.Textbox(label="π Total Jobs", interactive=False, scale=1)
stats_completed = gr.Textbox(label="β
Completed", interactive=False, scale=1)
stats_running = gr.Textbox(label="βοΈ Running", interactive=False, scale=1)
stats_failed = gr.Textbox(label="β Failed", interactive=False, scale=1)
with gr.Tab("π₯ Generate Video"):
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("### π Content Configuration")
topic_input = gr.Textbox(
label="π Topic",
placeholder="e.g., Fourier Transform, Calculus Derivatives, Quantum Mechanics",
info="Enter the main topic for your educational video"
)
description_input = gr.Textbox(
label="π Detailed Description",
placeholder="Provide a comprehensive description of what you want the video to cover, including specific concepts, examples, and target audience level...",
lines=6,
info="The more detailed your description, the better the AI can generate relevant content"
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### π API Configuration")
# Simple API key input
api_key_input = gr.Textbox(
label="π OpenAI API Key",
placeholder="Enter your OpenAI API key",
type="password",
value="",
interactive=True,
info="Your OpenAI API key for GPT-4o-mini access"
)
# Display current model setting
gr.Markdown(f"**π€ AI Model:** Using {DEFAULT_MODEL} for all operations")
# Temperature control
temperature_input = gr.Slider(
label="π‘οΈ Creativity (Temperature)",
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
info="Lower = more focused, Higher = more creative"
)
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown("### π§ Advanced Settings")
with gr.Row():
max_retries_input = gr.Slider(
label="π Max Retries",
minimum=1,
maximum=10,
value=3,
step=1,
info="Number of retry attempts for failed operations"
)
max_scene_concurrency_input = gr.Slider(
label="β‘ Scene Concurrency",
minimum=1,
maximum=5,
value=1,
step=1,
info="Number of scenes to process simultaneously"
)
with gr.Row():
use_rag_input = gr.Checkbox(
label="π Use RAG (Retrieval Augmented Generation)",
value=False,
info="Enhance generation with relevant knowledge retrieval"
)
use_visual_fix_code_input = gr.Checkbox(
label="π¨ Use Visual Code Fixing",
value=True,
info="Automatically fix visual rendering issues"
)
use_context_learning_input = gr.Checkbox(
label="π§ Use Context Learning",
value=False,
info="Learn from previous successful videos"
)
verbose_input = gr.Checkbox(
label="π Verbose Logging",
value=True,
info="Enable detailed logging for debugging"
)
with gr.Row():
with gr.Column(scale=3):
submit_btn = gr.Button("π Generate Video", variant="primary", size="lg")
with gr.Column(scale=1):
clear_form_btn = gr.Button("π§Ή Clear Form", variant="secondary")
result_text = gr.Textbox(label="π Status", interactive=False)
job_id_output = gr.Textbox(label="Job ID", visible=False)
with gr.Column(visible=False) as status_container:
with gr.Group():
gr.Markdown("### π Job Progress")
with gr.Row():
with gr.Column(scale=3):
status_text = gr.Textbox(label="Current Status", interactive=False, elem_classes=["status-card"])
processing_time_text = gr.Textbox(label="Processing Information", visible=False, interactive=False)
with gr.Column(scale=1):
with gr.Group():
refresh_btn = gr.Button("π Refresh Status", variant="secondary")
cancel_btn = gr.Button("βΉοΈ Cancel Job", variant="stop", visible=False)
with gr.Row():
with gr.Column(scale=2):
video_output = gr.Video(
label="π¬ Generated Video",
interactive=False,
visible=False,
show_download_button=True
)
thumbnail_preview = gr.Image(
label="πΌοΈ Video Thumbnail",
visible=False,
height=200
)
with gr.Column(scale=1):
scene_gallery = gr.Gallery(
label="π¨ Scene Previews",
columns=2,
object_fit="contain",
height=400,
show_download_button=True
)
with gr.Tab("π Job History & Management"):
# Job list table (full width)
jobs_table = gr.Dataframe(
headers=["ID", "Topic", "Status", "Progress (%)", "Start Time", "Message"],
datatype=["str", "str", "str", "number", "str", "str"],
interactive=False,
label=None,
wrap=True,
elem_classes=["job-history-table"]
)
# Action buttons (horizontal row, full width)
with gr.Row():
select_job_btn = gr.Button("ποΈ View Details", variant="primary", size="sm")
delete_job_btn = gr.Button("ποΈ Delete", variant="stop", size="sm")
download_job_btn = gr.Button("πΎ Download", variant="secondary", size="sm")
refresh_jobs_btn = gr.Button("π Refresh List", variant="secondary", size="sm")
clear_completed_btn = gr.Button("π§Ή Clear Completed", variant="secondary", size="sm")
clear_all_btn = gr.Button("ποΈ Clear All", variant="stop", size="sm")
selected_job_id = gr.Textbox(label="Selected Job ID", visible=False)
# Job details viewer (full width, below buttons)
with gr.Group(elem_classes=["job-details-panel"]):
gr.Markdown("""
<div style='font-size:1.2em; font-weight:600; margin-bottom:0.5em;'>
ποΈ <span style='color:#3b82f6'>Job Details Viewer</span>
</div>
""")
close_details_btn = gr.Button("β¬
οΈ Back to Job List", variant="secondary", size="sm", visible=False)
job_details_container = gr.Column(visible=False)
with job_details_container:
with gr.Row():
with gr.Column(scale=2):
job_topic_display = gr.Textbox(label="π Topic", interactive=False)
job_description_display = gr.Textbox(label="π Description", interactive=False, lines=3)
job_model_display = gr.Textbox(label="π€ Model Used", interactive=False)
with gr.Column(scale=1):
job_status_display = gr.Textbox(label="π Status", interactive=False)
job_progress_display = gr.Number(label="π Progress (%)", interactive=False)
job_start_time_display = gr.Textbox(label="β° Start Time", interactive=False)
with gr.Row():
job_processing_time_display = gr.Textbox(label="β±οΈ Processing Time", interactive=False)
job_message_display = gr.Textbox(label="π¬ Current Message", interactive=False)
with gr.Column(visible=False) as job_video_container:
gr.Markdown("### π¬ Generated Video")
job_video_player = gr.Video(
label="Video Output",
interactive=False,
show_download_button=True,
height=300
)
with gr.Row():
with gr.Column(scale=1):
job_thumbnail_display = gr.Image(
label="πΌοΈ Thumbnail",
height=150,
interactive=False
)
with gr.Column(scale=2):
job_scene_gallery = gr.Gallery(
label="π¨ Scene Previews",
columns=3,
object_fit="contain",
height=150,
show_download_button=True
)
with gr.Column(visible=False) as job_error_container:
gr.Markdown("### β Error Details")
job_error_display = gr.Textbox(
label="Error Message",
interactive=False,
lines=3
)
job_stack_trace_display = gr.Textbox(
label="Stack Trace",
interactive=False,
lines=5,
max_lines=10
)
no_job_selected = gr.Markdown(
"""
<div style='padding:2em 0;text-align:center;color:#888;'>
<b>π No Job Selected</b><br>
Select a job from the list to view its details.
</div>
""",
visible=True
)
with gr.Tab("βΉοΈ Help & Documentation"):
gr.Markdown("""
## π― How to Use Theory2Manim
### π Step 1: Content Planning
- **Topic**: Enter a clear, specific topic (e.g., "Linear Algebra: Matrix Multiplication")
- **Description**: Provide detailed context about what you want covered:
- Target audience level (beginner, intermediate, advanced)
- Specific concepts to include
- Examples or applications to demonstrate
- Preferred video length or depth
### π Step 2: API Configuration
- **OpenAI API Key**: Enter your OpenAI API key for access
- **AI Model**: Automatically uses GPT-4o-mini for optimal cost and performance
### βοΈ Step 3: Advanced Settings
- **Temperature**: 0.3-0.5 for factual content, 0.7-0.9 for creative explanations
- **RAG**: Enable for topics requiring external knowledge
- **Visual Code Fixing**: Recommended for better video quality
- **Context Learning**: Use previous successful videos as examples
### π Step 4: Monitor Progress
- Check the **Job History** tab to monitor all your video generation tasks
- Use **Refresh Status** to get real-time updates
- **Cancel** jobs if needed during processing
### π¬ Step 5: Review Results
- Preview generated videos directly in the interface
- View scene breakdowns and thumbnails
- Download videos for offline use
## π‘ Tips for Best Results
1. **Be Specific**: Detailed descriptions lead to better videos
2. **Start Simple**: Try basic topics first to understand the system
3. **Use Examples**: Mention specific examples you want included
4. **Set Context**: Specify the educational level and background needed
5. **Review Settings**: Adjust temperature and models based on your content type
## π§ Troubleshooting
- **Job Stuck**: Try canceling and resubmitting with different settings
- **Poor Quality**: Use higher temperature or enable Visual Code Fixing
- **Missing Content**: Provide more detailed descriptions
- **Errors**: Check the verbose logs in the status messages
""")
# Event handlers with improved functionality
def clear_form():
return ("", "", 0.7, False, True, False, True, 1, 1, "", "Form cleared! Ready for new input.")
def update_stats():
stats = get_job_statistics()
return (f"{stats['total']}",
f"{stats['completed']}",
f"{stats['running']}",
f"{stats['failed']}")
def clear_completed_jobs():
completed_jobs = [job_id for job_id, job in job_status.items()
if job.get('status') == 'completed']
for job_id in completed_jobs:
delete_job(job_id)
return f"Cleared {len(completed_jobs)} completed jobs"
def clear_all_jobs():
count = len(job_status)
job_status.clear()
return f"Cleared all {count} jobs"
# Connect simplified event handlers - no model selection needed
clear_form_btn.click(
fn=clear_form,
outputs=[topic_input, description_input, temperature_input,
use_rag_input, use_visual_fix_code_input, use_context_learning_input,
verbose_input, max_retries_input, max_scene_concurrency_input, api_key_input, result_text]
)
submit_btn.click(
fn=submit_job,
inputs=[
topic_input, description_input, max_retries_input,
use_rag_input, use_visual_fix_code_input, temperature_input, use_context_learning_input,
verbose_input, max_scene_concurrency_input, api_key_input
],
outputs=[result_text, job_id_output, status_container]
).then(
fn=update_status_display,
inputs=[job_id_output],
outputs=[status_text, video_output, video_output, thumbnail_preview, scene_gallery, processing_time_text, cancel_btn]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
refresh_btn.click(
fn=update_status_display,
inputs=[job_id_output],
outputs=[status_text, video_output, video_output, thumbnail_preview, scene_gallery, processing_time_text, cancel_btn]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
cancel_btn.click(
fn=cancel_job,
inputs=[job_id_output],
outputs=[result_text]
).then(
fn=update_status_display,
inputs=[job_id_output],
outputs=[status_text, video_output, video_output, thumbnail_preview, scene_gallery, processing_time_text, cancel_btn]
)
# Job history tab functions
def load_job_list():
jobs = get_job_list()
rows = []
for job in jobs:
start_time = job.get('start_time', '')
if start_time:
try:
dt = datetime.fromisoformat(start_time.replace('Z', '+00:00'))
formatted_time = dt.strftime('%Y-%m-%d %H:%M:%S')
except:
formatted_time = start_time
else:
formatted_time = 'Unknown'
rows.append([
job['id'][:8] + '...',
job['topic'][:50] + ('...' if len(job['topic']) > 50 else ''),
job['status'].title(),
job['progress'],
formatted_time,
job['message'][:100] + ('...' if len(job['message']) > 100 else '')
])
return rows
def select_job(evt: gr.EventData):
if not evt or not hasattr(evt, 'index') or not evt.index:
# No job selected
return "", "No job selected", gr.update(visible=False)
selected_row = evt.index[0]
jobs = get_job_list()
if selected_row < len(jobs):
# Job selected
return jobs[selected_row]['id'], f"Selected job: {jobs[selected_row]['topic']}", gr.update(visible=True)
return "", "No job selected", gr.update(visible=False)
def back_to_job_list():
# Show job list, hide details
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
def view_job_details(job_id):
"""View details of a selected job."""
if not job_id or job_id not in job_status:
# Return 17 outputs, all hidden or empty
return (
gr.update(visible=False), # job_details_container
gr.update(visible=True), # no_job_selected
"", "", "", "", 0, "", "", "", # topic, desc, model, status, progress, start, proc_time, msg
gr.update(visible=False), # job_video_container
gr.update(visible=False, value=None), # job_video_player
gr.update(visible=False, value=None), # job_thumbnail_display
gr.update(visible=False, value=[]), # job_scene_gallery
gr.update(visible=False), # job_error_container
gr.update(visible=False, value=""), # job_error_display
gr.update(visible=False, value="") # job_stack_trace_display
)
job = job_status[job_id]
# Format start time
start_time = job.get('start_time', '')
if start_time:
try:
dt = datetime.fromisoformat(start_time.replace('Z', '+00:00'))
formatted_time = dt.strftime('%Y-%m-%d %H:%M:%S')
except:
formatted_time = start_time
else:
formatted_time = 'Unknown'
# Video and error visibility
is_completed = job.get('status') == 'completed'
is_failed = job.get('status') == 'failed'
# Always return 17 outputs in order
return (
gr.update(visible=True), # job_details_container
gr.update(visible=False), # no_job_selected
job.get('topic', ''),
job.get('description', ''),
job.get('model', ''),
gr.update(value=job.get('status', '').title()), # status_display
job.get('progress', 0),
formatted_time,
job.get('processing_time', ''),
job.get('message', ''),
gr.update(visible=is_completed), # job_video_container
gr.update(visible=is_completed, value=job.get('output_file') if is_completed else None), # job_video_player
gr.update(visible=is_completed and job.get('thumbnail') is not None, value=job.get('thumbnail') if is_completed else None), # job_thumbnail_display
gr.update(visible=is_completed, value=job.get('scene_snapshots', []) if is_completed else []), # job_scene_gallery
gr.update(visible=is_failed), # job_error_container
gr.update(visible=is_failed, value=job.get('error', '') if is_failed else ""), # job_error_display
gr.update(visible=is_failed, value=job.get('stack_trace', '') if is_failed else "") # job_stack_trace_display
)
def delete_selected_job(job_id):
"""Delete the selected job and update the UI."""
if not job_id or job_id not in job_status:
return "Job not found", None, gr.update(visible=False)
# Delete the job
result = delete_job(job_id)
# Update job list
jobs = get_job_list()
# Refresh job table
return result, gr.update(value=load_job_list()), gr.update(visible=False)
def download_job_results(job_id):
"""Download the results of a job."""
if not job_id or job_id not in job_status:
return "Job not found", None
job = job_status[job_id]
output_file = job.get('output_file')
if not output_file or not os.path.exists(output_file):
return "Output file not found", None
return "Download started", output_file
# Connect job history tab event handlers
refresh_jobs_btn.click(
fn=load_job_list,
outputs=[jobs_table]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
jobs_table.select(
fn=select_job,
outputs=[selected_job_id, result_text, close_details_btn]
)
select_job_btn.click(
fn=view_job_details,
inputs=[selected_job_id],
outputs=[
job_details_container, no_job_selected,
job_topic_display, job_description_display, job_model_display,
job_status_display, job_progress_display, job_start_time_display,
job_processing_time_display, job_message_display,
job_video_container, job_video_player, job_thumbnail_display, job_scene_gallery,
job_error_container, job_error_display, job_stack_trace_display
]
)
close_details_btn.click(
fn=back_to_job_list,
outputs=[job_details_container, no_job_selected, close_details_btn]
)
download_job_btn.click(
fn=download_job_results,
inputs=[selected_job_id],
outputs=[result_text]
)
delete_job_btn.click(
fn=delete_selected_job,
inputs=[selected_job_id],
outputs=[result_text, selected_job_id]
).then(
fn=load_job_list,
outputs=[jobs_table]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
clear_completed_btn.click(
fn=clear_completed_jobs,
outputs=[result_text]
).then(
fn=load_job_list,
outputs=[jobs_table]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
clear_all_btn.click(
fn=clear_all_jobs,
outputs=[result_text]
).then(
fn=load_job_list,
outputs=[jobs_table]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
# Set up polling for status updates
app.load(
fn=load_job_list,
outputs=[jobs_table]
).then(
fn=update_stats,
outputs=[stats_total, stats_completed, stats_running, stats_failed]
)
# Load on app start
def on_app_start():
if not os.path.exists("thumbnails"):
os.makedirs("thumbnails", exist_ok=True)
return "π¬ Welcome to Theory2Manim Video Generator! Ready to create amazing educational videos."
app.load(
fn=on_app_start,
outputs=[result_text]
)
if __name__ == "__main__":
import os
app.queue().launch(
server_name=os.getenv("GRADIO_SERVER_NAME", "0.0.0.0"),
server_port=int(os.getenv("GRADIO_SERVER_PORT", 7860)),
share=False
) |