from langchain.tools import Tool import random import os from huggingface_hub import list_models # from langchain_tavily import TavilySearch from langchain_community.tools import DuckDuckGoSearchRun from dotenv import load_dotenv load_dotenv() # Initialize the DuckDuckGo search tool search_tool = DuckDuckGoSearchRun() def get_weather_info(location: str) -> str: """Fetches dummy weather information for a given location.""" # Dummy weather data weather_conditions = [ {"condition": "Rainy", "temp_c": 15}, {"condition": "Clear", "temp_c": 25}, {"condition": "Windy", "temp_c": 20}, ] # Randomly select a weather condition data = random.choice(weather_conditions) return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C" def get_hub_stats(author: str) -> str: """Fetches the most downloaded model from a specific author on the Hugging Face Hub.""" try: # List models from the specified author, sorted by downloads models = list(list_models( author=author, sort="downloads", direction=-1, limit=1)) if models: model = models[0] return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads." else: return f"No models found for author {author}." except Exception as e: return f"Error fetching models for {author}: {str(e)}" # def get_latest_news(topic: str) -> str: # """Fetches the latest news about a specific topic using Tavily search.""" # try: # # Initialize Tavily search with API key from environment # tavily_search = TavilySearch( # api_key=os.getenv("TAVILY_API_KEY"), # max_results=2, # topic="general", # search_depth="basic", # include_answer=True, # include_raw_content=False, # include_images=False # ) # # Search for news about the topic # response = tavily_search.invoke( # {"query": f"latest news about {topic}"}) # # Handle the correct Tavily response format # if isinstance(response, dict) and 'results' in response: # results = response['results'] # answer = response.get('answer', '') # if results: # # Format the results nicely # formatted_news = f"📰 Latest News about '{topic}':\n\n" # # Add AI-generated answer if available # if answer: # formatted_news += f"🤖 **Quick Summary**: {answer}\n\n" # # Add detailed results # formatted_news += "📋 **Detailed Results**:\n\n" # for i, result in enumerate(results, 1): # title = result.get('title', 'No title') # content = result.get('content', 'No content available') # url = result.get('url', 'No URL') # score = result.get('score', 0) # formatted_news += f"{i}. **{title}**\n" # formatted_news += f" 📄 Summary: {content}\n" # formatted_news += f" 🔗 Source: {url}\n" # formatted_news += f" ⭐ Relevance: {score:.2f}\n\n" # return formatted_news # else: # return f"No recent news found about '{topic}'. Please try a different search term." # else: # return f"Unexpected response format from search. Raw response: {str(response)[:500]}..." # except Exception as e: # return f"Error fetching news about '{topic}': {str(e)}. Please check your Tavily API key and try again." weather_info_tool = Tool( name="weather_info", func=get_weather_info, description="Fetches dummy weather information for a given location." ) hub_stats_tool = Tool( name="hub_stats", func=get_hub_stats, description="Fetches the most downloaded model from a specific author on the Hugging Face Hub." ) # news_search_tool = Tool( # name="news_search", # func=get_latest_news, # description="Fetches the latest news about a specific topic using Tavily search. Provide a topic or keyword to search for recent news articles." # ) news_search_tool = search_tool