import os from typing import TypedDict, Annotated from dotenv import load_dotenv from langgraph.graph.message import add_messages from langchain_core.messages import AnyMessage, HumanMessage, AIMessage from langgraph.prebuilt import ToolNode from langgraph.graph import START, StateGraph from langgraph.prebuilt import tools_condition from langchain_openai import AzureChatOpenAI from retriever import guest_info_tool from tools import weather_info_tool, hub_stats_tool, news_search_tool load_dotenv() chat = AzureChatOpenAI( azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), api_key=os.getenv("AZURE_OPENAI_API_KEY"), deployment_name=os.getenv("DEPLOYMENT_NAME"), openai_api_version=os.getenv("OPENAI_API_VERSION"), temperature=0.75, streaming=True, verbose=True ) tools = [guest_info_tool, weather_info_tool, hub_stats_tool, news_search_tool] chat_with_tools = chat.bind_tools(tools) class AgentState(TypedDict): messages: Annotated[list[AnyMessage], add_messages] def assistant(state: AgentState): return { "messages": [chat_with_tools.invoke(state["messages"])], } # The graph builder = StateGraph(AgentState) # Define nodes: these do the work builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) # Define edges: these determine how the control flow moves builder.add_edge(START, "assistant") builder.add_conditional_edges( "assistant", # If the latest message requires a tool, route to tools # Otherwise, provide a direct response tools_condition, ) builder.add_edge("tools", "assistant") # Compile with debug mode for verbosity alfred = builder.compile(debug=True) messages = [HumanMessage( content="One of our guests is from Qwen. What can you tell me about their most recent popular AI model(search about it )?")] print("🔍 Starting Agent Execution...") print("="*50) # Use stream instead of invoke to see step-by-step execution final_messages = None for step in alfred.stream({"messages": messages}): print(f"📍 Current Step: {list(step.keys())}") for node_name, node_output in step.items(): print(f"🔧 Node '{node_name}' output:") if 'messages' in node_output: latest_message = node_output['messages'][-1] # Keep track of final messages final_messages = node_output['messages'] print(f" Type: {type(latest_message).__name__}") if hasattr(latest_message, 'content'): print(f" Content: {latest_message.content[:200]}...") if hasattr(latest_message, 'tool_calls') and latest_message.tool_calls: print(f" Tool Calls: {latest_message.tool_calls}") print("-" * 30) print("\n"*3) print("="*50) print("🎩 Alfred's Final Response:") if final_messages: print(final_messages[-1].content)