import re import gradio as gr import torch from transformers import DonutProcessor, VisionEncoderDecoderModel device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if torch.cuda.is_available() else torch.float32 processor = DonutProcessor.from_pretrained("sam749/donut-base-finetuned-sroie-v2") model = VisionEncoderDecoderModel.from_pretrained("sam749/donut-base-finetuned-sroie-v2", dtype=dtype) model.to(device) def process_document(image): # prepare encoder inputs pixel_values = processor(image, return_tensors="pt").pixel_values # generate answer outputs = model.generate( pixel_values.to(device), use_cache=True, num_beams=1, max_length=128, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) # postprocess sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token return processor.token2json(sequence) description = """Gradio Demo for Donut, an instance of `VisionEncoderDecoderModel` fine-tuned on SROI (document parsing & information extraction). To use it, simply upload your image and click 'submit', or click one of the examples to load them.
Output: extracts [date, company, total] from the document. """ article = "

Donut: OCR-free Document Understanding Transformer | Github Repo

" demo = gr.Interface( fn=process_document, inputs="image", outputs="json", title="Demo: Donut 🍩 for Document Parsing", description=description, article=article, examples=[["example_1.png"], ["example_2.png"], ["example_3.png"]], cache_examples=False) demo.launch()