donut-sroie / app.py
sam749's picture
Update app.py
4bcef57 verified
import re
import gradio as gr
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
processor = DonutProcessor.from_pretrained("sam749/donut-base-finetuned-sroie-v2")
model = VisionEncoderDecoderModel.from_pretrained("sam749/donut-base-finetuned-sroie-v2", dtype=dtype)
model.to(device)
def process_document(image):
# prepare encoder inputs
pixel_values = processor(image, return_tensors="pt").pixel_values
# generate answer
outputs = model.generate(
pixel_values.to(device),
use_cache=True,
num_beams=1,
max_length=128,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# postprocess
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
return processor.token2json(sequence)
description = """Gradio Demo for Donut, an instance of `VisionEncoderDecoderModel` fine-tuned on SROI (document parsing & information extraction).
To use it, simply upload your image and click 'submit', or click one of the examples to load them.
<br>
<em>Output: </em>extracts [date, company, total] from the document.
"""
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.15664' target='_blank'>Donut: OCR-free Document Understanding Transformer</a> | <a href='https://github.com/clovaai/donut' target='_blank'>Github Repo</a></p>"
demo = gr.Interface(
fn=process_document,
inputs="image",
outputs="json",
title="Demo: Donut 🍩 for Document Parsing",
description=description,
article=article,
examples=[["example_1.png"], ["example_2.png"], ["example_3.png"]],
cache_examples=False)
demo.launch()