Spaces:
Sleeping
Sleeping
update requirements
Browse files- requirements.txt +41 -42
requirements.txt
CHANGED
|
@@ -1,43 +1,42 @@
|
|
| 1 |
-
gradio>=4.0.0
|
| 2 |
-
yfinance>=0.2.18
|
| 3 |
-
pandas>=1.5.0
|
| 4 |
-
numpy>=1.24.0
|
| 5 |
-
plotly>=5.15.0
|
| 6 |
-
scikit-learn>=1.3.0
|
| 7 |
-
transformers>=4.35.0
|
| 8 |
-
torch>=2.0.0
|
| 9 |
-
accelerate>=0.24.0
|
| 10 |
-
safetensors>=0.4.0
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
- **
|
| 29 |
-
- **
|
| 30 |
-
- **
|
| 31 |
-
- **
|
| 32 |
-
- **
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
The application will fetch historical data, apply the TimesFM model for forecasting, and display results with interactive charts and detailed statistics.
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
yfinance>=0.2.18
|
| 3 |
+
pandas>=1.5.0
|
| 4 |
+
numpy>=1.24.0
|
| 5 |
+
plotly>=5.15.0
|
| 6 |
+
scikit-learn>=1.3.0
|
| 7 |
+
transformers>=4.35.0
|
| 8 |
+
torch>=2.0.0
|
| 9 |
+
accelerate>=0.24.0
|
| 10 |
+
safetensors>=0.4.0
|
| 11 |
+
|
| 12 |
+
This application provides a comprehensive IDX stock prediction system with the following features:
|
| 13 |
+
|
| 14 |
+
## Key Features:
|
| 15 |
+
|
| 16 |
+
1. **Stock Selection**: Dropdown with 35+ major Indonesian stocks from various sectors
|
| 17 |
+
2. **Flexible Parameters**: Adjustable historical period and forecast horizon
|
| 18 |
+
3. **Advanced Model**: Uses Google's TimesFM-2.0-500M for time series forecasting
|
| 19 |
+
4. **Interactive Visualizations**: Plotly charts with historical data, forecasts, and confidence intervals
|
| 20 |
+
5. **Volume Analysis**: Option to include trading volume in predictions
|
| 21 |
+
6. **Summary Statistics**: Key metrics and trend indicators
|
| 22 |
+
7. **Stock Information**: Additional details like market cap, 52-week highs/lows
|
| 23 |
+
8. **Examples**: Pre-configured examples for quick testing
|
| 24 |
+
|
| 25 |
+
## Technical Implementation:
|
| 26 |
+
|
| 27 |
+
- **Multi-file structure** for better maintainability
|
| 28 |
+
- **Error handling** with fallback prediction methods
|
| 29 |
+
- **Data preprocessing** with scaling and missing value handling
|
| 30 |
+
- **Model loading optimization** with lazy loading
|
| 31 |
+
- **Interactive UI** with tabs and responsive design
|
| 32 |
+
- **Real-time data fetching** from Yahoo Finance
|
| 33 |
+
|
| 34 |
+
## How to Use:
|
| 35 |
+
|
| 36 |
+
1. Install dependencies: `pip install -r requirements.txt`
|
| 37 |
+
2. Run the application: `python app.py`
|
| 38 |
+
3. Select a stock from the dropdown
|
| 39 |
+
4. Adjust parameters if needed
|
| 40 |
+
5. Click "Analyze Stock" to generate predictions
|
| 41 |
+
|
|
|
|
| 42 |
The application will fetch historical data, apply the TimesFM model for forecasting, and display results with interactive charts and detailed statistics.
|