Spaces:
Running
Running
Nikhil Agarwal
commited on
Commit
·
cd33cdc
1
Parent(s):
71b21e9
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import re
|
| 4 |
+
import torch
|
| 5 |
+
import cv2
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
| 10 |
+
|
| 11 |
+
title = "OCR using Donut"
|
| 12 |
+
description = """
|
| 13 |
+
This demo application uses `naver-clova-ix/donut-base` model to extract text from images.
|
| 14 |
+
"""
|
| 15 |
+
article = "Check out [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) documentation that this demo is based off of."
|
| 16 |
+
|
| 17 |
+
checkpoint = "naver-clova-ix/donut-base"
|
| 18 |
+
|
| 19 |
+
processor = DonutProcessor.from_pretrained(checkpoint)
|
| 20 |
+
model = VisionEncoderDecoderModel.from_pretrained(checkpoint)
|
| 21 |
+
|
| 22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
+
model.to(device)
|
| 24 |
+
|
| 25 |
+
# prepare decoder inputs
|
| 26 |
+
task_prompt = "<s_synthdog>"
|
| 27 |
+
decoder_input_ids = processor.tokenizer(
|
| 28 |
+
task_prompt, add_special_tokens=False, return_tensors="pt"
|
| 29 |
+
).input_ids
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def convert_image_GRAY2BGR(image):
|
| 33 |
+
if len(np.asarray(image).shape) != 3:
|
| 34 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_GRAY2BGR)
|
| 35 |
+
image = Image.fromarray(np.uint8(image))
|
| 36 |
+
return image
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def predict(image):
|
| 40 |
+
image = convert_image_GRAY2BGR(image)
|
| 41 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
| 42 |
+
|
| 43 |
+
outputs = model.generate(
|
| 44 |
+
pixel_values.to(device),
|
| 45 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
| 46 |
+
max_length=model.decoder.config.max_position_embeddings,
|
| 47 |
+
early_stopping=True,
|
| 48 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
| 49 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 50 |
+
use_cache=True,
|
| 51 |
+
num_beams=1,
|
| 52 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
| 53 |
+
return_dict_in_generate=True,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
| 57 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
|
| 58 |
+
processor.tokenizer.pad_token, ""
|
| 59 |
+
)
|
| 60 |
+
sequence = re.sub(
|
| 61 |
+
r"<.*?>", "", sequence, count=1
|
| 62 |
+
).strip() # remove first task start token
|
| 63 |
+
return processor.token2json(sequence)["text_sequence"]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# We instantiate the Textbox class
|
| 67 |
+
input_textbox = gr.Textbox(
|
| 68 |
+
label="Type your prompt here:", placeholder="John Doe", lines=2
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
gr.Interface(
|
| 72 |
+
fn=predict,
|
| 73 |
+
inputs="image",
|
| 74 |
+
outputs="text",
|
| 75 |
+
title=title,
|
| 76 |
+
description=description,
|
| 77 |
+
article=article,
|
| 78 |
+
examples=[
|
| 79 |
+
os.path.join(os.path.dirname(__file__), "../data/sample/sample-1.png"),
|
| 80 |
+
os.path.join(os.path.dirname(__file__), "../data/sample/lorem_ipsum.png"),
|
| 81 |
+
],
|
| 82 |
+
).launch()
|