Spaces:
Sleeping
Sleeping
Update rag_dspy.py
Browse files- rag_dspy.py +10 -8
rag_dspy.py
CHANGED
|
@@ -12,7 +12,7 @@ load_dotenv()
|
|
| 12 |
# DSPy setup
|
| 13 |
lm = dspy.LM("gpt-4", max_tokens=512,api_key=os.environ.get("OPENAI_API_KEY"))
|
| 14 |
client = QdrantClient(url=os.environ.get("QDRANT_CLOUD_URL"), api_key=os.environ.get("QDRANT_API_KEY"))
|
| 15 |
-
collection_name = "
|
| 16 |
rm = QdrantRM(
|
| 17 |
qdrant_collection_name=collection_name,
|
| 18 |
qdrant_client=client,
|
|
@@ -24,7 +24,7 @@ dspy.settings.configure(lm=lm, rm=rm)
|
|
| 24 |
|
| 25 |
# Manual reranker using ColBERT multivector field
|
| 26 |
# Manual reranker using Qdrant’s native prefetch + ColBERT query
|
| 27 |
-
def rerank_with_colbert(query_text,
|
| 28 |
from fastembed import TextEmbedding, LateInteractionTextEmbedding
|
| 29 |
|
| 30 |
# Encode query once with both models
|
|
@@ -48,8 +48,8 @@ def rerank_with_colbert(query_text, year, specialty):
|
|
| 48 |
query_filter=Filter(
|
| 49 |
must=[
|
| 50 |
FieldCondition(key="specialty", match=MatchValue(value=specialty)),
|
| 51 |
-
FieldCondition(key="year",
|
| 52 |
-
|
| 53 |
|
| 54 |
)
|
| 55 |
)
|
|
@@ -66,7 +66,8 @@ def rerank_with_colbert(query_text, year, specialty):
|
|
| 66 |
class MedicalAnswer(dspy.Signature):
|
| 67 |
question = dspy.InputField(desc="The medical question to answer")
|
| 68 |
is_medical = dspy.OutputField(desc="Answer 'Yes' if the question is medical, otherwise 'No'")
|
| 69 |
-
|
|
|
|
| 70 |
specialty = dspy.InputField(desc="The specialty of the medical paper")
|
| 71 |
context = dspy.OutputField(desc="The answer to the medical question")
|
| 72 |
final_answer = dspy.OutputField(desc="The answer to the medical question")
|
|
@@ -87,16 +88,17 @@ class MedicalRAG(dspy.Module):
|
|
| 87 |
super().__init__()
|
| 88 |
self.guardrail = MedicalGuardrail()
|
| 89 |
|
| 90 |
-
def forward(self, question,
|
| 91 |
if not self.guardrail.forward(question):
|
| 92 |
class DummyResult:
|
| 93 |
final_answer = "Sorry, I can only answer medical questions. Please ask a question related to medicine or healthcare."
|
| 94 |
return DummyResult()
|
| 95 |
-
reranked_docs = rerank_with_colbert(question,
|
| 96 |
context_str = "\n".join(reranked_docs)
|
| 97 |
return dspy.ChainOfThought(MedicalAnswer)(
|
| 98 |
question=question,
|
| 99 |
-
|
|
|
|
| 100 |
specialty=specialty,
|
| 101 |
context=context_str
|
| 102 |
)
|
|
|
|
| 12 |
# DSPy setup
|
| 13 |
lm = dspy.LM("gpt-4", max_tokens=512,api_key=os.environ.get("OPENAI_API_KEY"))
|
| 14 |
client = QdrantClient(url=os.environ.get("QDRANT_CLOUD_URL"), api_key=os.environ.get("QDRANT_API_KEY"))
|
| 15 |
+
collection_name = "medical_chat_bot"
|
| 16 |
rm = QdrantRM(
|
| 17 |
qdrant_collection_name=collection_name,
|
| 18 |
qdrant_client=client,
|
|
|
|
| 24 |
|
| 25 |
# Manual reranker using ColBERT multivector field
|
| 26 |
# Manual reranker using Qdrant’s native prefetch + ColBERT query
|
| 27 |
+
def rerank_with_colbert(query_text, min_year, max_year, specialty):
|
| 28 |
from fastembed import TextEmbedding, LateInteractionTextEmbedding
|
| 29 |
|
| 30 |
# Encode query once with both models
|
|
|
|
| 48 |
query_filter=Filter(
|
| 49 |
must=[
|
| 50 |
FieldCondition(key="specialty", match=MatchValue(value=specialty)),
|
| 51 |
+
FieldCondition(key="year",range=models.Range(gt=None,gte=min_year,lt=None,lte=max_year))
|
| 52 |
+
]
|
| 53 |
|
| 54 |
)
|
| 55 |
)
|
|
|
|
| 66 |
class MedicalAnswer(dspy.Signature):
|
| 67 |
question = dspy.InputField(desc="The medical question to answer")
|
| 68 |
is_medical = dspy.OutputField(desc="Answer 'Yes' if the question is medical, otherwise 'No'")
|
| 69 |
+
min_year = dspy.InputField(desc="The minimum year of the medical paper")
|
| 70 |
+
max_year = dspy.InputField(desc="The maximum year of the medical paper")
|
| 71 |
specialty = dspy.InputField(desc="The specialty of the medical paper")
|
| 72 |
context = dspy.OutputField(desc="The answer to the medical question")
|
| 73 |
final_answer = dspy.OutputField(desc="The answer to the medical question")
|
|
|
|
| 88 |
super().__init__()
|
| 89 |
self.guardrail = MedicalGuardrail()
|
| 90 |
|
| 91 |
+
def forward(self, question, min_year, max_year, specialty):
|
| 92 |
if not self.guardrail.forward(question):
|
| 93 |
class DummyResult:
|
| 94 |
final_answer = "Sorry, I can only answer medical questions. Please ask a question related to medicine or healthcare."
|
| 95 |
return DummyResult()
|
| 96 |
+
reranked_docs = rerank_with_colbert(question, min_year, max_year, specialty)
|
| 97 |
context_str = "\n".join(reranked_docs)
|
| 98 |
return dspy.ChainOfThought(MedicalAnswer)(
|
| 99 |
question=question,
|
| 100 |
+
min_year=min_year,
|
| 101 |
+
max_year=max_year,
|
| 102 |
specialty=specialty,
|
| 103 |
context=context_str
|
| 104 |
)
|