File size: 5,873 Bytes
bc8608f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""Pydantic models for chat API."""

from typing import List, Optional, Dict, Any
from pydantic import BaseModel, Field, validator


class RetrievalConfig(BaseModel):
    """Configuration for retrieval operations."""

    similarity_threshold: float = Field(
        default=0.7,
        ge=0.0,
        le=1.0,
        description="Minimum similarity score for retrieval"
    )
    max_results: int = Field(
        default=5,
        ge=1,
        le=20,
        description="Maximum results to retrieve"
    )
    use_mmr: bool = Field(
        default=True,
        description="Use Maximal Marginal Relevance"
    )
    mmr_lambda: float = Field(
        default=0.5,
        ge=0.0,
        le=1.0,
        description="MMR diversity parameter"
    )
    exclude_templates: bool = Field(
        default=True,
        description="Exclude template content from results"
    )
    include_metadata: bool = Field(
        default=True,
        description="Include chunk metadata in results"
    )


class ChatRequest(BaseModel):
    """Request model for chat endpoint."""

    query: str = Field(
        ...,
        min_length=1,
        max_length=1000,
        description="User's question"
    )
    context: Optional[List[str]] = Field(
        None,
        description="Optional context to include"
    )
    config: Optional[RetrievalConfig] = Field(
        None,
        description="Retrieval configuration"
    )
    stream: bool = Field(
        default=False,
        description="Enable streaming response"
    )
    conversation_id: Optional[str] = Field(
        None,
        description="Conversation ID for context preservation"
    )

    @validator('query')
    def validate_query(cls, v):
        if not v or v.strip() == "":
            raise ValueError("query cannot be empty")
        if len(v.strip()) < 3:
            raise ValueError("query must be at least 3 characters")
        return v.strip()


class TextSelectionRequest(BaseModel):
    """Request model for text selection Q&A."""

    query: str = Field(..., description="Question about selected text")
    selected_text: str = Field(..., description="Text selected by user")
    context: Optional[str] = Field(
        None,
        description="Surrounding context (optional)"
    )
    page_number: Optional[int] = Field(
        None,
        description="Page number if applicable"
    )


class Source(BaseModel):
    """Source information for chat response."""

    content: str = Field(..., description="Relevant content snippet")
    file_path: str = Field(..., description="Source file path")
    section_header: Optional[str] = Field(None, description="Section title")
    similarity_score: float = Field(..., ge=0.0, le=1.0)
    chunk_index: int = Field(..., description="Chunk position in document")
    content_hash: str = Field(..., description="SHA256 hash of content")
    is_duplicate: bool = Field(default=False, description="True if duplicate")


class ChatResponse(BaseModel):
    """Response model for chat endpoint."""

    response: str = Field(..., description="Generated answer")
    sources: List[Source] = Field(..., description="Sources used for answer")
    context_used: bool = Field(..., description="Whether RAG context was used")
    query_embedding: Optional[List[float]] = Field(
        None,
        description="Query embedding (for debugging)"
    )
    response_id: str = Field(..., description="Unique response identifier")
    metadata: Dict[str, Any] = Field(
        default_factory=dict,
        description="Additional metadata"
    )
    model_used: Optional[str] = Field(None, description="Model used for generation")
    tokens_used: Optional[int] = Field(None, description="Tokens consumed")
    duration_ms: Optional[int] = Field(None, description="Response time in milliseconds")


class SearchRequest(BaseModel):
    """Request model for semantic search."""

    query: str = Field(..., description="Search query")
    config: Optional[RetrievalConfig] = Field(None, description="Search configuration")
    limit: int = Field(
        default=10,
        ge=1,
        le=50,
        description="Maximum results to return"
    )
    filters: Optional[Dict[str, Any]] = Field(
        None,
        description="Additional search filters"
    )


class SearchResult(BaseModel):
    """Single search result."""

    id: str = Field(..., description="Document ID")
    content: str = Field(..., description="Document content")
    file_path: str = Field(..., description="Source file path")
    section_header: Optional[str] = Field(None, description="Section title")
    similarity_score: float = Field(..., ge=0.0, le=1.0)
    rank: int = Field(..., description="Result rank")
    is_duplicate: bool = Field(default=False, description="True if duplicate")
    metadata: Dict[str, Any] = Field(default_factory=dict)


class SearchResponse(BaseModel):
    """Response model for semantic search."""

    results: List[SearchResult] = Field(..., description="Search results")
    total: int = Field(..., description="Total matches found")
    query_time_ms: int = Field(..., description="Search duration in milliseconds")
    query_embedding: Optional[List[float]] = Field(None, description="Query embedding")


class HealthResponse(BaseModel):
    """Health check response."""

    status: str = Field(..., description="System status")
    version: str = Field(..., description="API version")
    uptime_seconds: int = Field(..., description="Server uptime in seconds")
    services: Dict[str, Any] = Field(..., description="Service statuses")
    metrics: Dict[str, Any] = Field(..., description="System metrics")


class ErrorResponse(BaseModel):
    """Standard error response."""

    error: Dict[str, Any] = Field(..., description="Error details")
    request_id: Optional[str] = Field(None, description="Request identifier")