File size: 6,599 Bytes
052ccb0 bc8608f 052ccb0 bc8608f 052ccb0 bc8608f b925190 bc8608f 5c28dac bc8608f 5c28dac bc8608f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
---
title: AI Book RAG API
emoji: π€
colorFrom: blue
colorTo: green
sdk: docker
app_port: 7860
---
# RAG Backend for Physical AI & Humanoid Robotics Book
A production-ready Retrieval-Augmented Generation (RAG) backend API for querying the "Physical AI & Humanoid Robotics" book content.
## Features
- **Document Ingestion**: Automatic processing of Markdown book content
- **Semantic Search**: OpenAI embeddings for intelligent content retrieval
- **Streaming Chat**: Server-Sent Events for real-time responses
- **Citations**: Automatic source attribution in markdown format
- **Conversation Context**: Short-term memory for follow-up questions
- **Rate Limiting**: Token bucket pattern with API key support
- **Health Monitoring**: Comprehensive system health checks
- **Task Management**: Background ingestion with progress tracking
## Quick Start
### Prerequisites
- Python 3.11+
- OpenAI API key
- Qdrant instance (local or cloud)
### Installation
1. **Install uv** (if not already installed):
```bash
# Unix/macOS
curl -LsSf https://astral.sh/uv/install.sh | sh
# Windows (PowerShell)
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
```
2. **Clone and setup**:
```bash
cd backend
# Install dependencies (10-100x faster than pip)
uv sync
# For development dependencies
uv sync --dev
```
2. **Configure environment**:
```bash
cp .env.example .env
# Edit .env with your configuration
```
3. **Start Qdrant** (local):
```bash
docker run -d --name qdrant -p 6333:6333 qdrant/qdrant:latest
```
4. **Run the API**:
```bash
# Using uv (recommended)
uv run uvicorn main:app --host 0.0.0.0 --port 7860
# Or using the script command
uv run rag-server
# With auto-reload for development
uv run uvicorn main:app --host 0.0.0.0 --port 7860 --reload
```
### Ingest Book Content
1. **Prepare content structure**:
```
book_content/
βββ chapter1.md
βββ chapter2.md
βββ chapter3/
βββ section1.md
βββ section2.md
```
2. **Trigger ingestion**:
```bash
# Using the API
curl -X POST "http://localhost:7860/ingest" \
-H "Content-Type: application/json" \
-d '{"content_path": "./book_content"}'
# Or using the script
python scripts/ingest.py --content-path ./book_content
```
### Chat with the Book
```bash
curl -X POST "http://localhost:7860/chat" \
-H "Content-Type: application/json" \
-d '{
"question": "What is humanoid robotics?",
"stream": true
}'
```
## API Endpoints
### Health Check
- `GET /health` - System health status
### Chat
- `POST /chat` - Ask questions about the book
- Supports streaming responses (`stream: true`)
- Optional session ID for conversation context
- Configurable retrieval parameters
### Ingestion
- `POST /ingest` - Trigger document ingestion
- `GET /ingest/status` - Get ingestion task status
- `GET /ingest/stats` - Get ingestion statistics
- `POST /ingest/{task_id}/cancel` - Cancel an ingestion task
### Management
- `GET /collections` - List Qdrant collections
- `DELETE /collections/{collection_name}` - Delete a collection
## Configuration
Environment variables:
```env
# OpenAI
OPENAI_API_KEY=your_api_key_here
OPENAI_MODEL=gpt-4.1-nano
OPENAI_EMBEDDING_MODEL=text-embedding-3-small
# Qdrant
QDRANT_URL=http://localhost:6333
QDRANT_API_KEY=your_api_key
# Content
BOOK_CONTENT_PATH=./book_content
CHUNK_SIZE=1000
CHUNK_OVERLAP=200
# API
API_HOST=0.0.0.0
API_PORT=7860
RATE_LIMIT_REQUESTS=60
RATE_LIMIT_WINDOW=60
# Conversation
MAX_CONTEXT_MESSAGES=3
CONTEXT_WINDOW_SIZE=4000
```
## Architecture
### Core Components
1. **Ingestion Pipeline**:
- Markdown discovery and parsing
- Semantic chunking with overlap
- OpenAI embedding generation
- Qdrant vector storage
2. **Chat System**:
- Query embedding generation
- Semantic document retrieval
- Context-aware response generation
- Server-Sent Events streaming
3. **Management Layer**:
- Background task management
- Progress tracking
- Health monitoring
- Rate limiting
### Design Principles
- **Pure Python**: No LangChain dependency
- **Async/Await**: Full async implementation
- **Production Ready**: Error handling, logging, monitoring
- **HF Spaces Compatible**: Docker configuration for deployment
## Deployment
### Hugging Face Spaces
1. Create a new Space with Docker template
2. Add secrets in Space Settings > Variables and secrets:
```env
OPENAI_API_KEY=your_openai_api_key
QDRANT_URL=https://your-cluster.qdrant.io
QDRANT_API_KEY=your_qdrant_api_key # If using Qdrant Cloud
```
3. Push code to Space
**Required for Qdrant Cloud**: You must have the `QDRANT_URL` pointing to your Qdrant Cloud cluster URL. The API key is optional for public clusters but recommended for production.
### Docker
```bash
# Build
docker build -t rag-backend .
# Run
docker run -d \
--name rag-backend \
-p 7860:7860 \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
-e QDRANT_URL=$QDRANT_URL \
rag-backend
```
## Development
### Running Tests
```bash
# Install dev dependencies
pip install -r requirements.txt
# Run tests
pytest
# Run with coverage
pytest --cov=rag tests/
```
### Code Style
```bash
# Format code
black .
# Lint
ruff check .
# Type check
mypy .
```
## Monitoring
### Health Checks
The `/health` endpoint provides:
- Service status
- Connection health
- System metrics
- Active tasks
### Logging
Structured JSON logging with:
- Request tracing
- Error details
- Performance metrics
### Metrics
Track:
- Response times
- Token usage
- Error rates
- Active conversations
## Security
- Rate limiting with slowapi
- Optional API key authentication
- Input validation
- Error message sanitization
## Performance
- Connection pooling for Qdrant
- Batch embedding generation
- Efficient token counting
- Configurable batch sizes
## Troubleshooting
### Common Issues
1. **Qdrant Connection Failed**:
- Check Qdrant is running
- Verify URL and API key
- Check network connectivity
2. **OpenAI API Errors**:
- Verify API key is valid
- Check quota limits
- Implement retries
3. **Memory Issues**:
- Reduce batch sizes
- Limit concurrent requests
- Monitor chunk sizes
### Debug Mode
Enable debug logging:
```bash
LOG_LEVEL=DEBUG uvicorn main:app --reload
```
## Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Add tests
5. Submit a pull request
## License
This project is licensed under the MIT License. |