Spaces:
Running
on
Zero
Running
on
Zero
File size: 46,655 Bytes
7a421a5 ef862da 7a421a5 ef862da 7a421a5 ef862da 7a421a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.utils import deprecate, logging
from safetensors.torch import load_file
from diffusers.loaders import AttnProcsLayers
from utils.extract_conditions import compute_melody, compute_melody_v2, compute_dynamics, extract_melody_one_hot, evaluate_f1_rhythm
from madmom.features.downbeats import DBNDownBeatTrackingProcessor,RNNDownBeatProcessor
import numpy as np
import matplotlib.pyplot as plt
import os
from utils.stable_audio_dataset_utils import load_audio_file
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
import soundfile as sf
TOKEN = os.environ.get("HF_TOKEN") or os.environ.get("HF_HUB_TOKEN")
# For zero initialized 1D CNN in the attention processor
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module
# Original attention processor for
class StableAudioAttnProcessor2_0(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
used in the Stable Audio model. It applies rotary embedding on query and key vector, and allows MHA, GQA or MQA.
"""
def __init__(self):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"StableAudioAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
def apply_partial_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Tuple[torch.Tensor],
) -> torch.Tensor:
from diffusers.models.embeddings import apply_rotary_emb
rot_dim = freqs_cis[0].shape[-1]
x_to_rotate, x_unrotated = x[..., :rot_dim], x[..., rot_dim:]
x_rotated = apply_rotary_emb(x_to_rotate, freqs_cis, use_real=True, use_real_unbind_dim=-2)
out = torch.cat((x_rotated, x_unrotated), dim=-1)
return out
def __call__(
self,
attn,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
from diffusers.models.embeddings import apply_rotary_emb
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
head_dim = query.shape[-1] // attn.heads
kv_heads = key.shape[-1] // head_dim
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
if kv_heads != attn.heads:
# if GQA or MQA, repeat the key/value heads to reach the number of query heads.
heads_per_kv_head = attn.heads // kv_heads
key = torch.repeat_interleave(key, heads_per_kv_head, dim=1)
value = torch.repeat_interleave(value, heads_per_kv_head, dim=1)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if rotary_emb is not None:
query_dtype = query.dtype
key_dtype = key.dtype
query = query.to(torch.float32)
key = key.to(torch.float32)
rot_dim = rotary_emb[0].shape[-1]
query_to_rotate, query_unrotated = query[..., :rot_dim], query[..., rot_dim:]
query_rotated = apply_rotary_emb(query_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2)
query = torch.cat((query_rotated, query_unrotated), dim=-1)
if not attn.is_cross_attention:
key_to_rotate, key_unrotated = key[..., :rot_dim], key[..., rot_dim:]
key_rotated = apply_rotary_emb(key_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2)
key = torch.cat((key_rotated, key_unrotated), dim=-1)
query = query.to(query_dtype)
key = key.to(key_dtype)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
# print("hidden_states", hidden_states.shape)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
# The attention processor used in MuseControlLite, using 1 decoupled cross-attention layer
class StableAudioAttnProcessor2_0_rotary(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
used in the Stable Audio model. It applies rotary embedding on query and key vector, and allows MHA, GQA or MQA.
"""
def __init__(self, layer_id, hidden_size, name, cross_attention_dim=None, num_tokens=4, scale=1.0):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"StableAudioAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
super().__init__()
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding
self.layer_id = layer_id
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.num_tokens = num_tokens
self.scale = scale
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.name = name
self.conv_out = zero_module(nn.Conv1d(1536,1536,kernel_size=1, padding=0, bias=False))
self.rotary_emb = LlamaRotaryEmbedding(dim = 64)
self.to_k_ip.weight.requires_grad = True
self.to_v_ip.weight.requires_grad = True
self.conv_out.weight.requires_grad = True
def rotate_half(self, x):
x = x.view(*x.shape[:-1], x.shape[-1] // 2, 2)
x1, x2 = x.unbind(-1)
return torch.cat((-x2, x1), dim=-1)
def __call__(
self,
attn,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_hidden_states_con: Optional[torch.Tensor] = None,
encoder_hidden_states_audio: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
from diffusers.models.embeddings import apply_rotary_emb
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
# The original cross attention in Stable-audio
###############################################################
query = attn.to_q(hidden_states)
ip_hidden_states = encoder_hidden_states_con
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
head_dim = query.shape[-1] // attn.heads
kv_heads = key.shape[-1] // head_dim
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
if kv_heads != attn.heads:
# if GQA or MQA, repeat the key/value heads to reach the number of query heads.
heads_per_kv_head = attn.heads // kv_heads
key = torch.repeat_interleave(key, heads_per_kv_head, dim=1)
value = torch.repeat_interleave(value, heads_per_kv_head, dim=1)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
###############################################################
# The decupled cross attention in used in MuseControlLite, to deal with additional conditions
###############################################################
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
ip_key_length = ip_key.shape[2]
ip_value = ip_value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
if kv_heads != attn.heads:
# if GQA or MQA, repeat the key/value heads to reach the number of query heads.
heads_per_kv_head = attn.heads // kv_heads
ip_key = torch.repeat_interleave(ip_key, heads_per_kv_head, dim=1)
ip_value = torch.repeat_interleave(ip_value, heads_per_kv_head, dim=1)
ip_value_length = ip_value.shape[2]
seq_len_query = query.shape[2]
# Generate position_ids for query, keys, values
position_ids_query = torch.arange(seq_len_query, dtype=torch.long, device=query.device) * (ip_key_length / seq_len_query)
position_ids_query = position_ids_query.unsqueeze(0).expand(batch_size, -1) # Shape: [batch_size, seq_len_query]
position_ids_key = torch.arange(ip_key_length, dtype=torch.long, device=key.device)
position_ids_key = position_ids_key.unsqueeze(0).expand(batch_size, -1) # Shape: [batch_size, seq_len_key]
position_ids_value = torch.arange(ip_value_length, dtype=torch.long, device=value.device)
position_ids_value = position_ids_value.unsqueeze(0).expand(batch_size, -1) # Shape: [batch_size, seq_len_key]
# Rotate query, keys, values
cos, sin = self.rotary_emb(query, position_ids_query)
query_pos = (query * cos.unsqueeze(1)) + (self.rotate_half(query) * sin.unsqueeze(1))
cos, sin = self.rotary_emb(ip_key, position_ids_key)
ip_key = (ip_key * cos.unsqueeze(1)) + (self.rotate_half(ip_key) * sin.unsqueeze(1))
cos, sin = self.rotary_emb(ip_value, position_ids_value)
ip_value = (ip_value * cos.unsqueeze(1)) + (self.rotate_half(ip_value) * sin.unsqueeze(1))
ip_hidden_states = F.scaled_dot_product_attention(
query_pos, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
ip_hidden_states = ip_hidden_states.transpose(1, 2)
ip_hidden_states = self.conv_out(ip_hidden_states)
ip_hidden_states = ip_hidden_states.transpose(1, 2)
###############################################################
# Combine the output of the two cross-attention layers
hidden_states = hidden_states + self.scale * ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
# The attention processor used in MuseControlLite, using 2 decoupled cross-attention layer. It needs further examination, don't use it now.
class StableAudioAttnProcessor2_0_rotary_double(torch.nn.Module):
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
used in the Stable Audio model. It applies rotary embedding on query and key vector, and allows MHA, GQA or MQA.
"""
def __init__(self, layer_id, hidden_size, name, cross_attention_dim=None, num_tokens=4, scale=1.0):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"StableAudioAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
super().__init__()
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.num_tokens = num_tokens
self.layer_id = layer_id
self.scale = scale
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_k_ip_audio = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip_audio = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.name = name
self.conv_out = zero_module(nn.Conv1d(1536,1536,kernel_size=1, padding=0, bias=False))
self.conv_out_audio = zero_module(nn.Conv1d(1536,1536,kernel_size=1, padding=0, bias=False))
self.rotary_emb = LlamaRotaryEmbedding(64)
self.to_k_ip.weight.requires_grad = True
self.to_v_ip.weight.requires_grad = True
self.conv_out.weight.requires_grad = True
# Below is for copying the weight of the original weight to the decoupled cross-attention
def rotate_half(self, x):
x = x.view(*x.shape[:-1], x.shape[-1] // 2, 2)
x1, x2 = x.unbind(-1)
return torch.cat((-x2, x1), dim=-1)
def __call__(
self,
attn,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_hidden_states_con: Optional[torch.Tensor] = None,
encoder_hidden_states_audio: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
from diffusers.models.embeddings import apply_rotary_emb
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
# The original cross attention in Stable-audio
###############################################################
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
head_dim = query.shape[-1] // attn.heads
kv_heads = key.shape[-1] // head_dim
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
if kv_heads != attn.heads:
# if GQA or MQA, repeat the key/value heads to reach the number of query heads.
heads_per_kv_head = attn.heads // kv_heads
key = torch.repeat_interleave(key, heads_per_kv_head, dim=1)
value = torch.repeat_interleave(value, heads_per_kv_head, dim=1)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# if self.layer_id == "0":
# hidden_states_sliced = hidden_states[:,1:,:]
# # Create a tensor of zeros with shape (bs, 1, 768)
# bs, _, dim2 = hidden_states_sliced.shape
# zeros = torch.zeros(bs, 1, dim2).cuda()
# # Concatenate the zero tensor along the second dimension (dim=1)
# hidden_states_sliced = torch.cat((hidden_states_sliced, zeros), dim=1)
# query_sliced = attn.to_q(hidden_states_sliced)
# query_sliced = query_sliced.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# query = query_sliced
ip_hidden_states = encoder_hidden_states_con
ip_hidden_states_audio = encoder_hidden_states_audio
ip_key = self.to_k_ip(ip_hidden_states)
ip_value = self.to_v_ip(ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
ip_key_length = ip_key.shape[2]
ip_value = ip_value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
ip_key_audio = self.to_k_ip_audio(ip_hidden_states_audio)
ip_value_audio = self.to_v_ip_audio(ip_hidden_states_audio)
ip_key_audio = ip_key_audio.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
ip_key_audio_length = ip_key_audio.shape[2]
ip_value_audio = ip_value_audio.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
if kv_heads != attn.heads:
# if GQA or MQA, repeat the key/value heads to reach the number of query heads.
heads_per_kv_head = attn.heads // kv_heads
ip_key = torch.repeat_interleave(ip_key, heads_per_kv_head, dim=1)
ip_value = torch.repeat_interleave(ip_value, heads_per_kv_head, dim=1)
ip_key_audio = torch.repeat_interleave(ip_key_audio, heads_per_kv_head, dim=1)
ip_value_audio = torch.repeat_interleave(ip_value_audio, heads_per_kv_head, dim=1)
ip_value_length = ip_value.shape[2]
seq_len_query = query.shape[2]
ip_value_audio_length = ip_value_audio.shape[2]
position_ids_query = torch.arange(seq_len_query, dtype=torch.long, device=query.device) * (ip_key_length / seq_len_query)
position_ids_query = position_ids_query.unsqueeze(0).expand(batch_size, -1) # Shape: [batch_size, seq_len_query]
# Generate position_ids for keys
position_ids_key = torch.arange(ip_key_length, dtype=torch.long, device=key.device)
position_ids_key = position_ids_key.unsqueeze(0).expand(batch_size, -1) # Shape: [batch_size, seq_len_key]
position_ids_value = torch.arange(ip_value_length, dtype=torch.long, device=value.device)
position_ids_value = position_ids_value.unsqueeze(0).expand(batch_size, -1) # Shape: [batch_size, seq_len_key]
# Generate position_ids for keys
position_ids_query_audio = torch.arange(seq_len_query, dtype=torch.long, device=query.device) * (ip_key_audio_length / seq_len_query)
position_ids_query_audio = position_ids_query_audio.unsqueeze(0).expand(batch_size, -1) # Shape: [batch_size, seq_len_query]
position_ids_key_audio = torch.arange(ip_key_audio_length, dtype=torch.long, device=key.device)
position_ids_key_audio = position_ids_key_audio.unsqueeze(0).expand(batch_size, -1) # Shape: [batch_size, seq_len_key]
position_ids_value_audio = torch.arange(ip_value_audio_length, dtype=torch.long, device=value.device)
position_ids_value_audio = position_ids_value_audio.unsqueeze(0).expand(batch_size, -1) # Shape: [batch_size, seq_len_key]
cos, sin = self.rotary_emb(query, position_ids_query)
cos_audio, sin_audio = self.rotary_emb(query, position_ids_query_audio)
query_pos = (query * cos.unsqueeze(1)) + (self.rotate_half(query) * sin.unsqueeze(1))
query_pos_audio = (query * cos_audio.unsqueeze(1)) + (self.rotate_half(query) * sin_audio.unsqueeze(1))
cos, sin = self.rotary_emb(ip_key, position_ids_key)
cos_audio, sin_audio = self.rotary_emb(ip_key_audio, position_ids_key_audio)
ip_key = (ip_key * cos.unsqueeze(1)) + (self.rotate_half(ip_key) * sin.unsqueeze(1))
ip_key_audio = (ip_key_audio * cos_audio.unsqueeze(1)) + (self.rotate_half(ip_key_audio) * sin_audio.unsqueeze(1))
cos, sin = self.rotary_emb(ip_value, position_ids_value)
cos_audio, sin_audio = self.rotary_emb(ip_value_audio, position_ids_value_audio)
ip_value = (ip_value * cos.unsqueeze(1)) + (self.rotate_half(ip_value) * sin.unsqueeze(1))
ip_value_audio = (ip_value_audio * cos_audio.unsqueeze(1)) + (self.rotate_half(ip_value_audio) * sin_audio.unsqueeze(1))
with torch.amp.autocast(device_type='cuda'):
ip_hidden_states = F.scaled_dot_product_attention(
query_pos, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
with torch.amp.autocast(device_type='cuda'):
ip_hidden_states_audio = F.scaled_dot_product_attention(
query_pos_audio, ip_key_audio, ip_value_audio, attn_mask=None, dropout_p=0.0, is_causal=False
)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states = ip_hidden_states.to(query.dtype)
ip_hidden_states = ip_hidden_states.transpose(1, 2)
ip_hidden_states_audio = ip_hidden_states_audio.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
ip_hidden_states_audio = ip_hidden_states_audio.to(query.dtype)
ip_hidden_states_audio = ip_hidden_states_audio.transpose(1, 2)
with torch.amp.autocast(device_type='cuda'):
ip_hidden_states = self.conv_out(ip_hidden_states)
ip_hidden_states = ip_hidden_states.transpose(1, 2)
with torch.amp.autocast(device_type='cuda'):
ip_hidden_states_audio = self.conv_out_audio(ip_hidden_states_audio)
ip_hidden_states_audio = ip_hidden_states_audio.transpose(1, 2)
# Combine the tensors
hidden_states = hidden_states + self.scale * ip_hidden_states + ip_hidden_states_audio
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def setup_MuseControlLite(config, weight_dtype, transformer_ckpt):
"""
Setup AP-adapter pipeline with attention processors and load checkpoints.
Args:
config: Configuration dictionary
weight_dtype: Weight data type for the pipeline
transformer_ckpt: Path to transformer checkpoint
Returns:
tuple: (pipe, transformer) - Configured pipeline and transformer
"""
if 'audio' in config['condition_type'] and len(config['condition_type'])!=1:
from pipeline.stable_audio_multi_cfg_pipe_audio import StableAudioPipeline
attn_processor = StableAudioAttnProcessor2_0_rotary_double
audio_state_dict = load_file(config["audio_transformer_ckpt"], device="cpu")
else:
from pipeline.stable_audio_multi_cfg_pipe import StableAudioPipeline
attn_processor = StableAudioAttnProcessor2_0_rotary
pipe = StableAudioPipeline.from_pretrained(
"stabilityai/stable-audio-open-1.0",
torch_dtype=weight_dtype, token=TOKEN
)
pipe.scheduler.config.sigma_max = config["sigma_max"]
pipe.scheduler.config.sigma_min = config["sigma_min"]
transformer = pipe.transformer
attn_procs = {}
for name in transformer.attn_processors.keys():
if name.endswith("attn1.processor"):
attn_procs[name] = StableAudioAttnProcessor2_0()
else:
attn_procs[name] = attn_processor(
layer_id = name.split(".")[1],
hidden_size=768,
name=name,
cross_attention_dim=768,
scale=config['ap_scale'],
).to("cuda", dtype=torch.float)
if transformer_ckpt is not None:
state_dict = load_file(transformer_ckpt, device="cuda")
for name, processor in attn_procs.items():
if isinstance(processor, attn_processor):
weight_name_v = name + ".to_v_ip.weight"
weight_name_k = name + ".to_k_ip.weight"
conv_out_weight = name + ".conv_out.weight"
processor.to_v_ip.weight = torch.nn.Parameter(state_dict[weight_name_v].to(torch.float32))
processor.to_k_ip.weight = torch.nn.Parameter(state_dict[weight_name_k].to(torch.float32))
processor.conv_out.weight = torch.nn.Parameter(state_dict[conv_out_weight].to(torch.float32))
if attn_processor == StableAudioAttnProcessor2_0_rotary_double:
audio_weight_name_v = name + ".to_v_ip.weight"
audio_weight_name_k = name + ".to_k_ip.weight"
audio_conv_out_weight = name + ".conv_out.weight"
processor.to_v_ip_audio.weight = torch.nn.Parameter(audio_state_dict[audio_weight_name_v].to(torch.float32))
processor.to_k_ip_audio.weight = torch.nn.Parameter(audio_state_dict[audio_weight_name_k].to(torch.float32))
processor.conv_out_audio.weight = torch.nn.Parameter(audio_state_dict[audio_conv_out_weight].to(torch.float32))
transformer.set_attn_processor(attn_procs)
class _Wrapper(AttnProcsLayers):
def forward(self, *args, **kwargs):
return pipe.transformer(*args, **kwargs)
transformer = _Wrapper(pipe.transformer.attn_processors)
return pipe
def initialize_condition_extractors(config):
"""
Initialize condition extractors based on configuration.
Args:
config: Configuration dictionary containing condition types and checkpoint paths
Returns:
tuple: (condition_extractors, transformer_ckpt, extractor_ckpt)
"""
condition_extractors = {}
extractor_ckpt = {}
from utils.feature_extractor import dynamics_extractor, rhythm_extractor, melody_extractor_mono, melody_extractor_stereo, melody_extractor_full_mono, melody_extractor_full_stereo, dynamics_extractor_full_stereo
if not ("rhythm" in config['condition_type'] or "dynamics" in config['condition_type']):
if "melody_stereo" in config['condition_type']:
transformer_ckpt = config['transformer_ckpt_melody_stero']
extractor_ckpt = config['extractor_ckpt_melody_stero']
print(f"using model: {transformer_ckpt}, {extractor_ckpt}")
melody_conditoner = melody_extractor_full_stereo().cuda().float()
condition_extractors["melody"] = melody_conditoner
elif "melody_mono" in config['condition_type']:
transformer_ckpt = config['transformer_ckpt_melody_mono']
extractor_ckpt = config['extractor_ckpt_melody_mono']
print(f"using model: {transformer_ckpt}, {extractor_ckpt}")
melody_conditoner = melody_extractor_full_mono().cuda().float()
condition_extractors["melody"] = melody_conditoner
elif "audio" in config['condition_type']:
transformer_ckpt = config['audio_transformer_ckpt']
print(f"using model: {transformer_ckpt}")
else:
dynamics_conditoner = dynamics_extractor().cuda().float()
condition_extractors["dynamics"] = dynamics_conditoner
rhythm_conditoner = rhythm_extractor().cuda().float()
condition_extractors["rhythm"] = rhythm_conditoner
melody_conditoner = melody_extractor_mono().cuda().float()
condition_extractors["melody"] = melody_conditoner
transformer_ckpt = config['transformer_ckpt_musical']
extractor_ckpt = config['extractor_ckpt_musical']
print(f"using model: {transformer_ckpt}, {extractor_ckpt}")
for conditioner_type, ckpt_path in extractor_ckpt.items():
state_dict = load_file(ckpt_path, device="cpu")
condition_extractors[conditioner_type].load_state_dict(state_dict)
condition_extractors[conditioner_type].eval()
return condition_extractors, transformer_ckpt
def evaluate_and_plot_results(audio_file, gen_file_path, output_dir, i):
"""
Evaluate and plot results comparing original and generated audio.
Args:
audio_file (str): Path to the original audio file
gen_file_path (str): Path to the generated audio file
output_dir (str): Directory to save the plot
i (int): Index for naming the output file
Returns:
tuple: (dynamics_score, rhythm_score, melody_score)
"""
dynamics_condition = compute_dynamics(audio_file)
gen_dynamics = compute_dynamics(gen_file_path)
min_len_dynamics = min(gen_dynamics.shape[0], dynamics_condition.shape[0])
pearson_corr = np.corrcoef(gen_dynamics[:min_len_dynamics], dynamics_condition[:min_len_dynamics])[0, 1]
print("pearson_corr", pearson_corr)
melody_condition = extract_melody_one_hot(audio_file)
gen_melody = extract_melody_one_hot(gen_file_path)
min_len_melody = min(gen_melody.shape[1], melody_condition.shape[1])
matches = ((gen_melody[:, :min_len_melody] == melody_condition[:, :min_len_melody]) & (gen_melody[:, :min_len_melody] == 1)).sum()
accuracy = matches / min_len_melody
print("melody accuracy", accuracy)
# Adjust layout to avoid overlap
processor = RNNDownBeatProcessor()
original_path = os.path.join(output_dir, f"original_{i}.wav")
input_probabilities = processor(original_path)
generated_probabilities = processor(gen_file_path)
hmm_processor = DBNDownBeatTrackingProcessor(beats_per_bar=[3,4], fps=100)
input_timestamps = hmm_processor(input_probabilities)
generated_timestamps = hmm_processor(generated_probabilities)
precision, recall, f1 = evaluate_f1_rhythm(input_timestamps, generated_timestamps)
# Output results
print(f"F1 Score: {f1:.2f}")
# Plotting
frame_rate = 100 # Frames per second
input_time_axis = np.linspace(0, len(input_probabilities) / frame_rate, len(input_probabilities))
generate_time_axis = np.linspace(0, len(generated_probabilities) / frame_rate, len(generated_probabilities))
fig, axes = plt.subplots(2, 3, figsize=(18, 10)) # Adjust figsize as needed
# ----------------------------
# Subplot (0,0): Dynamics Plot
ax = axes[0, 0]
ax.plot(dynamics_condition[:min_len_dynamics].squeeze(), linewidth=1, label='Dynamics condition')
ax.set_title('Dynamics')
ax.set_xlabel('Time Frame')
ax.set_ylabel('Dynamics (dB)')
ax.legend(fontsize=8)
ax.grid(True)
# ----------------------------
# Subplot (0,0): Dynamics Plot
ax = axes[1, 0]
ax.plot(gen_dynamics[:min_len_dynamics].squeeze(), linewidth=1, label='Generated Dynamics')
ax.set_title('Dynamics')
ax.set_xlabel('Time Frame')
ax.set_ylabel('Dynamics (dB)')
ax.legend(fontsize=8)
ax.grid(True)
# ----------------------------
# Subplot (0,2): Melody Condition (Chromagram)
ax = axes[0, 1]
im2 = ax.imshow(melody_condition[:, :min_len_melody], aspect='auto', origin='lower',
interpolation='nearest', cmap='plasma')
ax.set_title('Melody Condition')
ax.set_xlabel('Time')
ax.set_ylabel('Chroma Features')
# ----------------------------
# Subplot (0,1): Generated Melody (Chromagram)
ax = axes[1, 1]
im1 = ax.imshow(gen_melody[:, :min_len_melody], aspect='auto', origin='lower',
interpolation='nearest', cmap='viridis')
ax.set_title('Generated Melody')
ax.set_xlabel('Time')
ax.set_ylabel('Chroma Features')
# ----------------------------
# Subplot (1,0): Rhythm Input Probabilities
ax = axes[0, 2]
ax.plot(input_time_axis, input_probabilities,
label="Input Beat Probability")
ax.plot(input_time_axis, input_probabilities,
label="Input Downbeat Probability", alpha=0.8)
ax.set_title('Rhythm: Input')
ax.set_xlabel('Time (s)')
ax.set_ylabel('Probability')
ax.legend()
ax.grid(True)
# ----------------------------
# Subplot (1,1): Rhythm Generated Probabilities
ax = axes[1, 2]
ax.plot(generate_time_axis, generated_probabilities,
color='orange', label="Generated Beat Probability")
ax.plot(generate_time_axis, generated_probabilities,
alpha=0.8, color='red', label="Generated Downbeat Probability")
ax.set_title('Rhythm: Generated')
ax.set_xlabel('Time (s)')
ax.set_ylabel('Probability')
ax.legend()
ax.grid(True)
# Adjust layout and save the combined image
plt.tight_layout()
combined_path = os.path.join(output_dir, f"combined_{i}.png")
plt.savefig(combined_path)
plt.close()
print(f"Combined plot saved to {combined_path}")
return pearson_corr, f1, accuracy
def process_musical_conditions(config, audio_file, condition_extractors, output_dir, i, weight_dtype, MuseControlLite):
"""
Process and extract musical conditions (dynamics, rhythm, melody) from audio file.
Args:
config: Configuration dictionary
audio_file: Path to the audio file
condition_extractors: Dictionary of condition extractors
output_dir: Output directory path
i: Index for file naming
weight_dtype: Weight data type for torch tensors
MuseControlLite: The MuseControlLite model instance
audio_mask_start: Start index for audio mask
audio_mask_end: End index for audio mask
musical_attribute_mask_start: Start index for musical attribute mask
musical_attribute_mask_end: End index for musical attribute mask
Returns:
tuple: (final_condition, extracted_condition, final_condition_audio)
"""
total_seconds = 2097152/44100
use_audio_mask = False
use_musical_attribute_mask = False
if (config["audio_mask_start_seconds"] and config["audio_mask_end_seconds"]) != 0 and "audio" in config["condition_type"]:
use_audio_mask = True
audio_mask_start = int(config["audio_mask_start_seconds"] / total_seconds * 1024) # 1024 is the latent length for 2097152/44100 seconds
audio_mask_end = int(config["audio_mask_end_seconds"] / total_seconds * 1024)
print(
f"using mask for 'audio' from "
f"{config['audio_mask_start_seconds']}~{config['audio_mask_end_seconds']}"
)
if (config["musical_attribute_mask_start_seconds"] and config["musical_attribute_mask_end_seconds"]) != 0:
use_musical_attribute_mask = True
musical_attribute_mask_start = int(config["musical_attribute_mask_start_seconds"] / total_seconds * 1024)
musical_attribute_mask_end = int(config["musical_attribute_mask_end_seconds"] / total_seconds * 1024)
masked_types = [t for t in config['condition_type'] if t != 'audio']
print(
f"using mask for {', '.join(masked_types)} "
f"from {config['musical_attribute_mask_start_seconds']}~"
f"{config['musical_attribute_mask_end_seconds']}"
)
if "dynamics" in config["condition_type"]:
dynamics_condition = compute_dynamics(audio_file)
dynamics_condition = torch.from_numpy(dynamics_condition).cuda()
dynamics_condition = dynamics_condition.unsqueeze(0).unsqueeze(0)
print("dynamics_condition", dynamics_condition.shape)
extracted_dynamics_condition = condition_extractors["dynamics"](dynamics_condition.to(torch.float32))
masked_extracted_dynamics_condition = torch.zeros_like(extracted_dynamics_condition)
extracted_dynamics_condition = F.interpolate(extracted_dynamics_condition, size=1024, mode='linear', align_corners=False)
masked_extracted_dynamics_condition = F.interpolate(masked_extracted_dynamics_condition, size=1024, mode='linear', align_corners=False)
else:
extracted_dynamics_condition = torch.zeros((1, 192, 1024), device="cuda")
masked_extracted_dynamics_condition = extracted_dynamics_condition
if "rhythm" in config["condition_type"]:
rnn_processor = RNNDownBeatProcessor()
wave = load_audio_file(audio_file)
if wave is not None:
original_path = os.path.join(output_dir, f"original_{i}.wav")
sf.write(original_path, wave.T.float().cpu().numpy(), 44100)
rhythm_curve = rnn_processor(original_path)
rhythm_condition = torch.from_numpy(rhythm_curve).cuda()
rhythm_condition = rhythm_condition.transpose(0,1).unsqueeze(0)
print("rhythm_condition", rhythm_condition.shape)
extracted_rhythm_condition = condition_extractors["rhythm"](rhythm_condition.to(torch.float32))
masked_extracted_rhythm_condition = torch.zeros_like(extracted_rhythm_condition)
extracted_rhythm_condition = F.interpolate(extracted_rhythm_condition, size=1024, mode='linear', align_corners=False)
masked_extracted_rhythm_condition = F.interpolate(masked_extracted_rhythm_condition, size=1024, mode='linear', align_corners=False)
else:
extracted_rhythm_condition = torch.zeros((1, 192, 1024), device="cuda")
masked_extracted_rhythm_condition = extracted_rhythm_condition
else:
extracted_rhythm_condition = torch.zeros((1, 192, 1024), device="cuda")
masked_extracted_rhythm_condition = extracted_rhythm_condition
if "melody_mono" in config["condition_type"]:
melody_condition = compute_melody(audio_file)
melody_condition = torch.from_numpy(melody_condition).cuda().unsqueeze(0)
print("melody_condition", melody_condition.shape)
extracted_melody_condition = condition_extractors["melody"](melody_condition.to(torch.float32))
masked_extracted_melody_condition = torch.zeros_like(extracted_melody_condition)
extracted_melody_condition = F.interpolate(extracted_melody_condition, size=1024, mode='linear', align_corners=False)
masked_extracted_melody_condition = F.interpolate(masked_extracted_melody_condition, size=1024, mode='linear', align_corners=False)
elif "melody_stereo" in config["condition_type"]:
melody_condition = compute_melody_v2(audio_file)
melody_condition = torch.from_numpy(melody_condition).cuda().unsqueeze(0)
print("melody_condition", melody_condition.shape)
extracted_melody_condition = condition_extractors["melody"](melody_condition)
masked_extracted_melody_condition = torch.zeros_like(extracted_melody_condition)
extracted_melody_condition = F.interpolate(extracted_melody_condition, size=1024, mode='linear', align_corners=False)
masked_extracted_melody_condition = F.interpolate(masked_extracted_melody_condition, size=1024, mode='linear', align_corners=False)
else:
if not ("rhythm" in config['condition_type'] or "dynamics" in config['condition_type']):
extracted_melody_condition = torch.zeros((1, 768, 1024), device="cuda")
else:
extracted_melody_condition = torch.zeros((1, 192, 1024), device="cuda")
masked_extracted_melody_condition = extracted_melody_condition
# Use multiple cfg
if not ("rhythm" in config['condition_type'] or "dynamics" in config['condition_type']):
extracted_condition = extracted_melody_condition
final_condition = torch.concat((masked_extracted_melody_condition, masked_extracted_melody_condition, extracted_melody_condition), dim=0)
else:
extracted_blank_condition = torch.zeros((1, 192, 1024), device="cuda")
extracted_condition = torch.concat((extracted_rhythm_condition, extracted_dynamics_condition, extracted_melody_condition, extracted_blank_condition), dim=1)
masked_extracted_condition = torch.concat((masked_extracted_rhythm_condition, masked_extracted_dynamics_condition, masked_extracted_melody_condition, extracted_blank_condition), dim=1)
final_condition = torch.concat((masked_extracted_condition, masked_extracted_condition, extracted_condition), dim=0)
if "audio" in config["condition_type"]:
desired_repeats = 768 // 64 # Number of repeats needed
audio = load_audio_file(audio_file)
if audio is not None:
audio_condition = MuseControlLite.vae.encode(audio.unsqueeze(0).to(weight_dtype).cuda()).latent_dist.sample()
extracted_audio_condition = audio_condition.repeat_interleave(desired_repeats, dim=1).float()
pad_len = 1024 - extracted_audio_condition.shape[-1]
if pad_len > 0:
# Pad on the right side (last dimension)
extracted_audio_condition = F.pad(extracted_audio_condition, (0, pad_len))
masked_extracted_audio_condition = torch.zeros_like(extracted_audio_condition)
if len(config["condition_type"]) == 1:
final_condition = torch.concat((masked_extracted_audio_condition, masked_extracted_audio_condition, extracted_audio_condition), dim=0)
else:
final_condition_audio = torch.concat((masked_extracted_audio_condition, masked_extracted_audio_condition, masked_extracted_audio_condition, extracted_audio_condition), dim=0)
final_condition = torch.concat((final_condition, extracted_condition), dim=0)
final_condition_audio = final_condition_audio.transpose(1, 2)
else:
final_condition_audio = None
final_condition = final_condition.transpose(1, 2)
if "audio" in config["condition_type"] and len(config["condition_type"])==1:
final_condition[:,audio_mask_start:audio_mask_end,:] = 0
if use_audio_mask:
config["guidance_scale_con"] = config["guidance_scale_audio"]
elif "audio" in config["condition_type"] and len(config["condition_type"])!=1 and use_audio_mask:
final_condition[:,:audio_mask_start,:] = 0
final_condition[:,audio_mask_end:,:] = 0
if 'final_condition_audio' in locals() and final_condition_audio is not None:
final_condition_audio[:,audio_mask_start:audio_mask_end,:] = 0
elif use_musical_attribute_mask:
final_condition[:,musical_attribute_mask_start:musical_attribute_mask_end,:] = 0
if 'final_condition_audio' in locals() and final_condition_audio is not None:
final_condition_audio[:,:musical_attribute_mask_start,:] = 0
final_condition_audio[:,musical_attribute_mask_end:,:] = 0
return final_condition, final_condition_audio if 'final_condition_audio' in locals() else None
|