File size: 12,424 Bytes
7200e76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
# Token Usage Guide for Hugging Face Jobs
**β οΈ CRITICAL:** Proper token usage is essential for any job that interacts with the Hugging Face Hub.
## Overview
Hugging Face tokens are authentication credentials that allow your jobs to interact with the Hub. They're required for:
- Pushing models/datasets to Hub
- Accessing private repositories
- Creating new repositories
- Using Hub APIs programmatically
- Any authenticated Hub operations
## Token Types
### Read Token
- **Permissions:** Download models/datasets, read private repos
- **Use case:** Jobs that only need to download/read content
- **Creation:** https://huggingface.co/settings/tokens
### Write Token
- **Permissions:** Push models/datasets, create repos, modify content
- **Use case:** Jobs that need to upload results (most common)
- **Creation:** https://huggingface.co/settings/tokens
- **β οΈ Required for:** Pushing models, datasets, or any uploads
### Organization Token
- **Permissions:** Act on behalf of an organization
- **Use case:** Jobs running under organization namespace
- **Creation:** Organization settings β Tokens
## Providing Tokens to Jobs
### Method 1: Automatic Token (Recommended) β
```python
hf_jobs("uv", {
"script": "your_script.py",
"secrets": {"HF_TOKEN": "$HF_TOKEN"} # β
Automatic replacement
})
```
**How it works:**
1. `$HF_TOKEN` is a placeholder that gets replaced with your actual token
2. Uses the token from your logged-in session (`hf auth login`)
3. Token is encrypted server-side when passed as a secret
4. Most secure and convenient method
**Benefits:**
- β
No token exposure in code
- β
Uses your current login session
- β
Automatically updated if you re-login
- β
Works seamlessly with MCP tools
- β
Token encrypted server-side
**Requirements:**
- Must be logged in: `hf auth login` or `hf_whoami()` works
- Token must have required permissions
### Method 2: Explicit Token (Not Recommended)
```python
hf_jobs("uv", {
"script": "your_script.py",
"secrets": {"HF_TOKEN": "hf_abc123..."} # β οΈ Hardcoded token
})
```
**When to use:**
- Only if automatic token doesn't work
- Testing with a specific token
- Organization tokens (use with caution)
**Security concerns:**
- β Token visible in code/logs
- β Must manually update if token rotates
- β Risk of token exposure
- β Not recommended for production
### Method 3: Environment Variable (Less Secure)
```python
hf_jobs("uv", {
"script": "your_script.py",
"env": {"HF_TOKEN": "hf_abc123..."} # β οΈ Less secure than secrets
})
```
**Difference from secrets:**
- `env` variables are visible in job logs
- `secrets` are encrypted server-side
- Always prefer `secrets` for tokens
**When to use:**
- Only for non-sensitive configuration
- Never use for tokens (use `secrets` instead)
## Using Tokens in Scripts
### Accessing Tokens
Tokens passed via `secrets` are available as environment variables in your script:
```python
import os
# Get token from environment
token = os.environ.get("HF_TOKEN")
# Verify token exists
if not token:
raise ValueError("HF_TOKEN not found in environment!")
```
### Using with Hugging Face Hub
**Option 1: Explicit token parameter**
```python
from huggingface_hub import HfApi
api = HfApi(token=os.environ.get("HF_TOKEN"))
api.upload_file(...)
```
**Option 2: Auto-detection (Recommended)**
```python
from huggingface_hub import HfApi
# Automatically uses HF_TOKEN env var
api = HfApi() # β
Simpler, uses token from environment
api.upload_file(...)
```
**Option 3: With transformers/datasets**
```python
from transformers import AutoModel
from datasets import load_dataset
# Auto-detects HF_TOKEN from environment
model = AutoModel.from_pretrained("username/model")
dataset = load_dataset("username/dataset")
# For push operations, token is auto-detected
model.push_to_hub("username/new-model")
dataset.push_to_hub("username/new-dataset")
```
### Complete Example
```python
# /// script
# dependencies = ["huggingface-hub", "datasets"]
# ///
import os
from huggingface_hub import HfApi
from datasets import Dataset
# Verify token is available
assert "HF_TOKEN" in os.environ, "HF_TOKEN required for Hub operations!"
# Use token for Hub operations
api = HfApi() # Auto-detects HF_TOKEN
# Create and push dataset
data = {"text": ["Hello", "World"]}
dataset = Dataset.from_dict(data)
# Push to Hub (token auto-detected)
dataset.push_to_hub("username/my-dataset")
print("β
Dataset pushed successfully!")
```
## Token Verification
### Check Authentication Locally
```python
from huggingface_hub import whoami
try:
user_info = whoami()
print(f"β
Logged in as: {user_info['name']}")
except Exception as e:
print(f"β Not authenticated: {e}")
```
### Verify Token in Job
```python
import os
# Check token exists
if "HF_TOKEN" not in os.environ:
raise ValueError("HF_TOKEN not found in environment!")
token = os.environ["HF_TOKEN"]
# Verify token format (should start with "hf_")
if not token.startswith("hf_"):
raise ValueError(f"Invalid token format: {token[:10]}...")
# Test token works
from huggingface_hub import whoami
try:
user_info = whoami(token=token)
print(f"β
Token valid for user: {user_info['name']}")
except Exception as e:
raise ValueError(f"Token validation failed: {e}")
```
## Common Token Issues
### Error: 401 Unauthorized
**Symptoms:**
```
401 Client Error: Unauthorized for url: https://huggingface.co/api/...
```
**Causes:**
1. Token missing from job
2. Token invalid or expired
3. Token not passed correctly
**Solutions:**
1. Add `secrets={"HF_TOKEN": "$HF_TOKEN"}` to job config
2. Verify `hf_whoami()` works locally
3. Re-login: `hf auth login`
4. Check token hasn't expired
**Verification:**
```python
# In your script
import os
assert "HF_TOKEN" in os.environ, "HF_TOKEN missing!"
```
### Error: 403 Forbidden
**Symptoms:**
```
403 Client Error: Forbidden for url: https://huggingface.co/api/...
```
**Causes:**
1. Token lacks required permissions (read-only token used for write)
2. No access to private repository
3. Organization permissions insufficient
**Solutions:**
1. Ensure token has write permissions
2. Check token type at https://huggingface.co/settings/tokens
3. Verify access to target repository
4. Use organization token if needed
**Check token permissions:**
```python
from huggingface_hub import whoami
user_info = whoami()
print(f"User: {user_info['name']}")
print(f"Type: {user_info.get('type', 'user')}")
```
### Error: Token not found in environment
**Symptoms:**
```
KeyError: 'HF_TOKEN'
ValueError: HF_TOKEN not found
```
**Causes:**
1. `secrets` not passed in job config
2. Wrong key name (should be `HF_TOKEN`)
3. Using `env` instead of `secrets`
**Solutions:**
1. Use `secrets={"HF_TOKEN": "$HF_TOKEN"}` (not `env`)
2. Verify key name is exactly `HF_TOKEN`
3. Check job config syntax
**Correct configuration:**
```python
# β
Correct
hf_jobs("uv", {
"script": "...",
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
})
# β Wrong - using env instead of secrets
hf_jobs("uv", {
"script": "...",
"env": {"HF_TOKEN": "$HF_TOKEN"} # Less secure
})
# β Wrong - wrong key name
hf_jobs("uv", {
"script": "...",
"secrets": {"TOKEN": "$HF_TOKEN"} # Wrong key
})
```
### Error: Repository access denied
**Symptoms:**
```
403 Client Error: Forbidden
Repository not found or access denied
```
**Causes:**
1. Token doesn't have access to private repo
2. Repository doesn't exist and can't be created
3. Wrong namespace
**Solutions:**
1. Use token from account with access
2. Verify repo visibility (public vs private)
3. Check namespace matches token owner
4. Create repo first if needed
**Check repository access:**
```python
from huggingface_hub import HfApi
api = HfApi()
try:
repo_info = api.repo_info("username/repo-name")
print(f"β
Access granted: {repo_info.id}")
except Exception as e:
print(f"β Access denied: {e}")
```
## Token Security Best Practices
### 1. Never Commit Tokens
**β Bad:**
```python
# Never do this!
token = "hf_abc123xyz..."
api = HfApi(token=token)
```
**β
Good:**
```python
# Use environment variable
token = os.environ.get("HF_TOKEN")
api = HfApi(token=token)
```
### 2. Use Secrets, Not Environment Variables
**β Bad:**
```python
hf_jobs("uv", {
"script": "...",
"env": {"HF_TOKEN": "$HF_TOKEN"} # Visible in logs
})
```
**β
Good:**
```python
hf_jobs("uv", {
"script": "...",
"secrets": {"HF_TOKEN": "$HF_TOKEN"} # Encrypted server-side
})
```
### 3. Use Automatic Token Replacement
**β Bad:**
```python
hf_jobs("uv", {
"script": "...",
"secrets": {"HF_TOKEN": "hf_abc123..."} # Hardcoded
})
```
**β
Good:**
```python
hf_jobs("uv", {
"script": "...",
"secrets": {"HF_TOKEN": "$HF_TOKEN"} # Automatic
})
```
### 4. Rotate Tokens Regularly
- Generate new tokens periodically
- Revoke old tokens
- Update job configurations
- Monitor token usage
### 5. Use Minimal Permissions
- Create tokens with only needed permissions
- Use read tokens when write isn't needed
- Don't use admin tokens for regular jobs
### 6. Don't Share Tokens
- Each user should use their own token
- Don't commit tokens to repositories
- Don't share tokens in logs or messages
### 7. Monitor Token Usage
- Check token activity in Hub settings
- Review job logs for token issues
- Set up alerts for unauthorized access
## Token Workflow Examples
### Example 1: Push Model to Hub
```python
hf_jobs("uv", {
"script": """
# /// script
# dependencies = ["transformers"]
# ///
import os
from transformers import AutoModel, AutoTokenizer
# Verify token
assert "HF_TOKEN" in os.environ, "HF_TOKEN required!"
# Load and process model
model = AutoModel.from_pretrained("base-model")
# ... process model ...
# Push to Hub (token auto-detected)
model.push_to_hub("username/my-model")
print("β
Model pushed!")
""",
"flavor": "a10g-large",
"timeout": "2h",
"secrets": {"HF_TOKEN": "$HF_TOKEN"} # β
Token provided
})
```
### Example 2: Access Private Dataset
```python
hf_jobs("uv", {
"script": """
# /// script
# dependencies = ["datasets"]
# ///
import os
from datasets import load_dataset
# Verify token
assert "HF_TOKEN" in os.environ, "HF_TOKEN required!"
# Load private dataset (token auto-detected)
dataset = load_dataset("private-org/private-dataset")
print(f"β
Loaded {len(dataset)} examples")
""",
"flavor": "cpu-basic",
"timeout": "30m",
"secrets": {"HF_TOKEN": "$HF_TOKEN"} # β
Token provided
})
```
### Example 3: Create and Push Dataset
```python
hf_jobs("uv", {
"script": """
# /// script
# dependencies = ["datasets", "huggingface-hub"]
# ///
import os
from datasets import Dataset
from huggingface_hub import HfApi
# Verify token
assert "HF_TOKEN" in os.environ, "HF_TOKEN required!"
# Create dataset
data = {"text": ["Sample 1", "Sample 2"]}
dataset = Dataset.from_dict(data)
# Push to Hub
api = HfApi() # Auto-detects HF_TOKEN
dataset.push_to_hub("username/my-dataset")
print("β
Dataset pushed!")
""",
"flavor": "cpu-basic",
"timeout": "30m",
"secrets": {"HF_TOKEN": "$HF_TOKEN"} # β
Token provided
})
```
## Quick Reference
### Token Checklist
Before submitting a job that uses Hub:
- [ ] Job includes `secrets={"HF_TOKEN": "$HF_TOKEN"}`
- [ ] Script checks for token: `assert "HF_TOKEN" in os.environ`
- [ ] Token has required permissions (read/write)
- [ ] User is logged in: `hf_whoami()` works
- [ ] Token not hardcoded in script
- [ ] Using `secrets` not `env` for token
### Common Patterns
**Pattern 1: Auto-detect token**
```python
from huggingface_hub import HfApi
api = HfApi() # Uses HF_TOKEN from environment
```
**Pattern 2: Explicit token**
```python
import os
from huggingface_hub import HfApi
api = HfApi(token=os.environ.get("HF_TOKEN"))
```
**Pattern 3: Verify token**
```python
import os
assert "HF_TOKEN" in os.environ, "HF_TOKEN required!"
```
## Key Takeaways
1. **Always use `secrets={"HF_TOKEN": "$HF_TOKEN"}`** for Hub operations
2. **Never hardcode tokens** in scripts or job configs
3. **Verify token exists** in script before Hub operations
4. **Use auto-detection** when possible (`HfApi()` without token parameter)
5. **Check permissions** - ensure token has required access
6. **Monitor token usage** - review activity regularly
7. **Rotate tokens** - generate new tokens periodically
|