Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from deep_translator import GoogleTranslator
|
| 3 |
+
from streamlit_mic_recorder import speech_to_text
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 5 |
+
from sentence_transformers import SentenceTransformer, util
|
| 6 |
+
import json
|
| 7 |
+
import time
|
| 8 |
+
st.set_page_config(layout="wide")
|
| 9 |
+
# Language dictionaries
|
| 10 |
+
language_dict = {
|
| 11 |
+
'English': 'en', 'Hindi': 'hi', 'Bengali': 'bn', 'Gujarati': 'gu', 'Marathi': 'mr',
|
| 12 |
+
'Telugu': 'te', 'Tamil': 'ta', 'Punjabi': 'pa', 'Odia': 'or', 'Nepali': 'ne', 'Malayalam': 'ml'
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
nllb_langs = {
|
| 16 |
+
'English':'eng_Latn','Hindi':'hin_Deva','Punjabi':'pan_Guru','Odia':'ory_Orya',
|
| 17 |
+
'Bengali':'ben_Beng','Telugu':'tel_Telu','Tamil':'tam_Taml','Nepali':'npi_Deva',
|
| 18 |
+
'Marathi':'mar_Deva','Malayalam':'mal_Mlym','Gujarati':'guj_Gujr'
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
CHAT_FILE = "chat_data.json"
|
| 22 |
+
|
| 23 |
+
@st.cache_resource
|
| 24 |
+
def load_nllb_model():
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
| 26 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
| 27 |
+
translator = pipeline('translation', model=model, tokenizer=tokenizer)
|
| 28 |
+
return translator
|
| 29 |
+
|
| 30 |
+
@st.cache_resource
|
| 31 |
+
def load_sentence_model():
|
| 32 |
+
return SentenceTransformer("google/muril-base-cased")
|
| 33 |
+
|
| 34 |
+
translator_nllb = load_nllb_model()
|
| 35 |
+
sentence_model = load_sentence_model()
|
| 36 |
+
|
| 37 |
+
def load_messages():
|
| 38 |
+
try:
|
| 39 |
+
with open(CHAT_FILE, "r") as file:
|
| 40 |
+
return json.load(file)
|
| 41 |
+
except (FileNotFoundError, json.JSONDecodeError):
|
| 42 |
+
return []
|
| 43 |
+
|
| 44 |
+
def save_messages(messages):
|
| 45 |
+
with open(CHAT_FILE, "w") as file:
|
| 46 |
+
json.dump(messages, file)
|
| 47 |
+
|
| 48 |
+
def translate_text_multimodel(text, source_lang_name, target_lang_name):
|
| 49 |
+
source_nllb = nllb_langs[source_lang_name]
|
| 50 |
+
target_nllb = nllb_langs[target_lang_name]
|
| 51 |
+
|
| 52 |
+
# NLLB Translation
|
| 53 |
+
translation_nllb = translator_nllb(text, src_lang=source_nllb, tgt_lang=target_nllb)[0]['translation_text']
|
| 54 |
+
print(translation_nllb)
|
| 55 |
+
# Google Translation
|
| 56 |
+
translation_google = GoogleTranslator(source='auto', target=language_dict[target_lang_name]).translate(text)
|
| 57 |
+
|
| 58 |
+
# Cosine similarity comparison
|
| 59 |
+
embedding_original = sentence_model.encode(text, convert_to_tensor=True)
|
| 60 |
+
embedding_nllb = sentence_model.encode(translation_nllb, convert_to_tensor=True)
|
| 61 |
+
embedding_google = sentence_model.encode(translation_google, convert_to_tensor=True)
|
| 62 |
+
|
| 63 |
+
cosine_score_nllb = util.cos_sim(embedding_original, embedding_nllb).item()
|
| 64 |
+
cosine_score_google = util.cos_sim(embedding_original, embedding_google).item()
|
| 65 |
+
|
| 66 |
+
# Select more accurate translation
|
| 67 |
+
if cosine_score_nllb >= cosine_score_google:
|
| 68 |
+
print('nllb')
|
| 69 |
+
return translation_nllb
|
| 70 |
+
else:
|
| 71 |
+
print('gt')
|
| 72 |
+
return translation_google
|
| 73 |
+
|
| 74 |
+
def main():
|
| 75 |
+
|
| 76 |
+
st.title("Multilingual Chat Application with Speech Input")
|
| 77 |
+
|
| 78 |
+
# Sidebar for user setup
|
| 79 |
+
st.sidebar.header("User Setup")
|
| 80 |
+
username = st.sidebar.text_input("Enter your name:")
|
| 81 |
+
language = st.sidebar.selectbox("Choose your language:", list(language_dict.keys()))
|
| 82 |
+
|
| 83 |
+
if not username:
|
| 84 |
+
st.warning("Please enter your name to start chatting.")
|
| 85 |
+
return
|
| 86 |
+
|
| 87 |
+
user_lang_code = language_dict[language]
|
| 88 |
+
|
| 89 |
+
if "messages" not in st.session_state:
|
| 90 |
+
st.session_state["messages"] = load_messages()
|
| 91 |
+
|
| 92 |
+
# Display chat history
|
| 93 |
+
st.subheader("Chat Room")
|
| 94 |
+
|
| 95 |
+
# chat_container = st.container()
|
| 96 |
+
|
| 97 |
+
# with chat_container:
|
| 98 |
+
for msg in st.session_state["messages"]:
|
| 99 |
+
# translated_text = GoogleTranslator(source='auto', target=user_lang_code).translate(msg['text'])
|
| 100 |
+
#translated_text
|
| 101 |
+
with st.chat_message(msg['name']):
|
| 102 |
+
st.write(f"{msg['name']} ({msg['lang']}): {msg['translations'][language]}")
|
| 103 |
+
|
| 104 |
+
# Speech input integration
|
| 105 |
+
st.subheader("Speak your message")
|
| 106 |
+
|
| 107 |
+
spoken_text = speech_to_text(language=user_lang_code, use_container_width=True, just_once=True, key='speech_input')
|
| 108 |
+
|
| 109 |
+
if spoken_text:
|
| 110 |
+
input_text = spoken_text
|
| 111 |
+
translations = {}
|
| 112 |
+
st.write(f"You said: {spoken_text}")
|
| 113 |
+
|
| 114 |
+
if spoken_text:
|
| 115 |
+
for lang in nllb_langs:
|
| 116 |
+
translation = translate_text_multimodel(spoken_text, language, lang)
|
| 117 |
+
translations[lang] = translation
|
| 118 |
+
new_message = {"user": username, "name": username, "lang": language, "text": input_text, "translations": translations}
|
| 119 |
+
st.session_state["messages"].append(new_message)
|
| 120 |
+
save_messages(st.session_state["messages"])
|
| 121 |
+
st.rerun()
|
| 122 |
+
time.sleep(1)
|
| 123 |
+
st.rerun()
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
if __name__ == "__main__":
|
| 131 |
+
main()
|