Spaces:
Sleeping
Sleeping
Update README.md
Browse files
README.md
CHANGED
|
@@ -6,343 +6,110 @@ colorFrom: purple
|
|
| 6 |
colorTo: green
|
| 7 |
short_description: CX AI LLM
|
| 8 |
---
|
| 9 |
-
title: Customer Experience Bot Demo emoji: 🤖 colorFrom: blue colorTo: purple sdk: gradio sdk_version: "4.44.0" app_file: app.py pinned: false
|
| 10 |
|
|
|
|
| 11 |
|
|
|
|
| 12 |
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
|
|
|
|
| 24 |
|
|
|
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
|
|
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
|
|
|
| 47 |
|
|
|
|
| 48 |
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
|
|
|
|
| 52 |
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
Null Handling: Drops rows with missing question or answer using df.dropna().
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
Duplicate Removal: Eliminates redundant FAQs via df[~df['question'].duplicated()].
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
Short Entry Filtering: Excludes questions <10 chars or answers <20 chars with df[(df['question'].str.len() >= 10) & (df['answer'].str.len() >= 20)].
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
Malformed Detection: Uses regex ([!?]{2,}|\b(Invalid|N/A)\b) to filter invalid questions.
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
Standardization: Normalizes text (e.g., mo to month) and fills missing language with en.
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
Output: Generates cleaned_call_center_faqs.csv for downstream modeling, with detailed cleanup stats (e.g., nulls, duplicates removed).
|
| 81 |
-
|
| 82 |
-
Enterprise-Grade Modeling Compatibility
|
| 83 |
-
|
| 84 |
-
The cleaned CSV is optimized for:
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
Amazon SageMaker: Ready for training BERT-based models (e.g., bert-base-uncased) for intent classification or FAQ retrieval, deployable via SageMaker JumpStart.
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
Azure AI: Compatible with Azure Machine Learning pipelines for fine-tuning models like DistilBERT in Azure Blob Storage, enabling scalable CX automation.
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
LLM Integration: While not used in this free-tier demo, the cleaned data supports fine-tuning LLMs (e.g., distilgpt2) for generative tasks, leveraging your FastAPI experience for API-driven inference.
|
| 99 |
-
|
| 100 |
-
Performance Monitoring and Visualization
|
| 101 |
-
|
| 102 |
-
The bot includes a performance monitoring suite:
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
Latency Tracking: Measures embedding, retrieval, and generation times using time.perf_counter(), reported in milliseconds.
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
Accuracy Metrics: Simulates retrieval accuracy (95% if FAQs retrieved, 0% otherwise) for demo purposes.
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
Visualization: Uses Matplotlib and Seaborn to plot a dual-axis chart (rag_plot.png):
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
Bar Chart: Latency (ms) per stage (Embedding, Retrieval, Generation).
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
Line Chart: Accuracy (%) per stage, with a muted palette for professional aesthetics.
|
| 127 |
-
|
| 128 |
-
Gradio Interface for Interactive CX
|
| 129 |
-
|
| 130 |
-
The bot is deployed via Gradio, providing a user-friendly interface:
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
Input: Text query field for user inputs (e.g., “How do I reset my password?”).
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
Outputs:
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
Bot response (e.g., “Go to the login page, click ‘Forgot Password,’...”).
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
Retrieved FAQs with question-answer pairs.
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
Cleanup stats (e.g., “Cleaned FAQs: 6; removed 4 junk entries”).
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
RAG pipeline plot for latency and accuracy.
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
Styling: Custom dark theme CSS (#2a2a2a background, blue buttons) for a sleek, enterprise-ready UI.
|
| 163 |
-
|
| 164 |
-
Setup
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
Clone this repository to a Hugging Face Space (free tier, public).
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
Add requirements.txt with dependencies (gradio==4.44.0, pandas==2.2.3, etc.).
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
Upload app.py (embeds call center FAQs for seamless deployment).
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
Configure to run with Python 3.9+, CPU hardware (no GPU).
|
| 183 |
-
|
| 184 |
-
Usage
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
Query: Enter a question in the Gradio UI (e.g., “How do I reset my password?”).
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
Output:
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
Response: Contextually relevant answer from retrieved FAQs.
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
Retrieved FAQs: Top-k question-answer pairs.
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
Cleanup Stats: Detailed breakdown of junk data removal (nulls, duplicates, short entries, malformed).
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
RAG Plot: Visual metrics for latency and accuracy.
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
Example:
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
Query: “How do I reset my password?”
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
Response: “Go to the login page, click ‘Forgot Password,’ and follow the email instructions.”
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
Cleanup Stats: “Cleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformed”
|
| 231 |
-
|
| 232 |
-
Call Center Data Cleanup
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
Preprocessing Pipeline:
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
Null Handling: Eliminates incomplete entries with df.dropna().
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
Duplicate Removal: Ensures uniqueness via df[~df['question'].duplicated()].
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
Short Entry Filtering: Maintains quality with length-based filtering.
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
Malformed Detection: Uses regex to identify and remove invalid queries.
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
Standardization: Normalizes text and metadata for consistency.
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
Impact: Produces high-fidelity FAQs for RAG/CAG pipelines, critical for call center CX automation.
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
Modeling Output: The cleaned cleaned_call_center_faqs.csv is ready for:
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
SageMaker: Fine-tuning BERT models for intent classification or FAQ retrieval.
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
Azure AI: Training DistilBERT in Azure ML for scalable CX automation.
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
LLM Fine-Tuning: Supports advanced generative tasks with LLMs via FastAPI endpoints.
|
| 283 |
-
|
| 284 |
-
Technical Details
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
Stack:
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
Pandas: Data wrangling and preprocessing for call center CSVs.
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
Hugging Face Transformers: all-MiniLM-L6-v2 for semantic embeddings.
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
FAISS: Vectorized similarity search with L2 distance metrics.
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
Gradio: Interactive UI for real-time CX demos.
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
Matplotlib/Seaborn: Performance visualization with dual-axis plots.
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
FastAPI Compatibility: Designed with API-driven inference in mind, leveraging your experience with FastAPI for scalable deployments (e.g., RESTful endpoints for RAG inference).
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
Free Tier Optimization: Lightweight with CPU-only dependencies, no GPU required.
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
Extensibility: Ready for integration with enterprise CRMs (e.g., Salesforce) via FastAPI, and cloud deployments on AWS Lambda or Azure Functions.
|
| 325 |
-
|
| 326 |
-
Purpose
|
| 327 |
-
|
| 328 |
-
This demo showcases expertise in AI-driven CX automation, with a focus on call center data quality, built on over 5 years of experience in AI, NLP, and enterprise-grade deployments. It demonstrates the power of RAG and CAG pipelines, Pandas-based data preprocessing, and scalable modeling for SageMaker and Azure AI, making it ideal for advanced CX solutions in call center environments.
|
| 329 |
-
|
| 330 |
-
Future Enhancements
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
LLM Integration: Incorporate distilgpt2 or t5-small (from your past projects) for generative responses, fine-tuned on cleaned call center data.
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
FastAPI Deployment: Expose RAG pipeline via FastAPI endpoints for production-grade inference.
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
Multilingual Scaling: Expand language support (e.g., French, German) using Hugging Face’s multilingual models.
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
Real-Time Monitoring: Add Prometheus metrics for latency/accuracy in production environments.
|
|
|
|
| 6 |
colorTo: green
|
| 7 |
short_description: CX AI LLM
|
| 8 |
---
|
|
|
|
| 9 |
|
| 10 |
+
# Internal RAG CX Data Preprocessing Demo
|
| 11 |
|
| 12 |
+
A robust data preprocessing pipeline for Retrieval-Augmented Generation (RAG) and Context-Augmented Generation (CAG) systems, deployed on Hugging Face as a Model repository (free tier). Built with over 5 years of AI expertise since 2020, this demo focuses on cleaning and preparing call center datasets for enterprise-grade CX applications in SaaS, HealthTech, FinTech, and eCommerce. It integrates advanced data wrangling with Pandas, ensuring high-quality FAQs for downstream RAG/CAG pipelines, and is compatible with Amazon SageMaker and Azure AI for scalable modeling.
|
| 13 |
|
| 14 |
+
## Technical Architecture
|
| 15 |
|
| 16 |
+
### Data Preprocessing Pipeline
|
| 17 |
|
| 18 |
+
The core of this demo is a comprehensive data preprocessing pipeline designed to clean raw call center datasets:
|
| 19 |
|
| 20 |
+
- **Data Ingestion**:
|
| 21 |
+
- Parses CSVs with `pd.read_csv`, using `io.StringIO` for embedded data, with explicit `quotechar` and `escapechar` to handle complex strings.
|
| 22 |
+
- Handles datasets with columns: `call_id`, `question`, `answer`, `language`.
|
| 23 |
|
| 24 |
+
- **Junk Data Cleanup**:
|
| 25 |
+
- **Null Handling**: Drops rows with missing `question` or `answer` using `df.dropna()`.
|
| 26 |
+
- **Duplicate Removal**: Eliminates redundant FAQs via `df[~df['question'].duplicated()]`.
|
| 27 |
+
- **Short Entry Filtering**: Excludes questions <10 chars or answers <20 chars with `df[(df['question'].str.len() >= 10) & (df['answer'].str.len() >= 20)]`.
|
| 28 |
+
- **Malformed Detection**: Uses regex (`[!?]{2,}|\b(Invalid|N/A)\b`) to filter invalid questions.
|
| 29 |
+
- **Standardization**: Normalizes text (e.g., "mo" to "month") and fills missing `language` with "en".
|
| 30 |
|
| 31 |
+
- **Output**:
|
| 32 |
+
- Generates `cleaned_call_center_faqs.csv` for downstream modeling.
|
| 33 |
+
- Provides cleanup stats: nulls removed, duplicates removed, short entries filtered, malformed entries detected.
|
| 34 |
|
| 35 |
+
### Enterprise-Grade Modeling Compatibility
|
| 36 |
|
| 37 |
+
The cleaned dataset is optimized for:
|
| 38 |
|
| 39 |
+
- **Amazon SageMaker**: Ready for training BERT-based models (e.g., `bert-base-uncased`) for intent classification or FAQ retrieval, deployable via SageMaker JumpStart.
|
| 40 |
+
- **Azure AI**: Compatible with Azure Machine Learning pipelines for fine-tuning models like DistilBERT in Azure Blob Storage, enabling scalable CX automation.
|
| 41 |
+
- **LLM Integration**: Supports fine-tuning LLMs (e.g., `distilgpt2`) for generative tasks, leveraging your FastAPI experience for API-driven inference.
|
| 42 |
|
| 43 |
+
## Performance Monitoring and Visualization
|
| 44 |
|
| 45 |
+
The demo includes a performance monitoring suite:
|
| 46 |
|
| 47 |
+
- **Processing Time Tracking**: Measures data ingestion, cleaning, and output times using `time.perf_counter()`, reported in milliseconds.
|
| 48 |
+
- **Cleanup Metrics**: Tracks the number of nulls, duplicates, short entries, and malformed entries removed.
|
| 49 |
+
- **Visualization**: Uses Matplotlib to plot a bar chart (`cleanup_stats.png`):
|
| 50 |
+
- Bars: Number of entries removed per category (Nulls, Duplicates, Short, Malformed).
|
| 51 |
+
- Palette: Professional muted colors for enterprise aesthetics.
|
| 52 |
|
| 53 |
+
## Gradio Interface for Interactive Demo
|
| 54 |
|
| 55 |
+
The demo is accessible via Gradio, providing an interactive data preprocessing experience:
|
| 56 |
|
| 57 |
+
- **Input**: Upload a sample call center CSV or use the embedded demo dataset.
|
| 58 |
+
- **Outputs**:
|
| 59 |
+
- **Cleaned Dataset**: Download `cleaned_call_center_faqs.csv`.
|
| 60 |
+
- **Cleanup Stats**: Detailed breakdown (e.g., “Cleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformed”).
|
| 61 |
+
- **Performance Plot**: Visual metrics for processing time and cleanup stats.
|
| 62 |
+
- **Styling**: Custom dark theme CSS (`#2a2a2a` background, blue buttons) for a sleek, enterprise-ready UI.
|
| 63 |
|
| 64 |
+
## Setup
|
| 65 |
|
| 66 |
+
- Clone this repository to a Hugging Face Model repository (free tier, public).
|
| 67 |
+
- Add `requirements.txt` with dependencies (`gradio==4.44.0`, `pandas==2.2.3`, `matplotlib==3.9.2`, etc.).
|
| 68 |
+
- Upload `app.py` (includes embedded demo dataset for seamless deployment).
|
| 69 |
+
- Configure to run with Python 3.9+, CPU hardware (no GPU).
|
| 70 |
|
| 71 |
+
## Usage
|
| 72 |
|
| 73 |
+
- **Upload CSV**: Provide a call center CSV in the Gradio UI, or use the default demo dataset.
|
| 74 |
+
- **Output**:
|
| 75 |
+
- **Cleaned Dataset**: Download the processed `cleaned_call_center_faqs.csv`.
|
| 76 |
+
- **Cleanup Stats**: “Cleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformed”.
|
| 77 |
+
- **Performance Plot**: Visual metrics for processing time and cleanup stats.
|
| 78 |
|
| 79 |
+
**Example**:
|
| 80 |
+
- **Input CSV**: Sample dataset with 10 FAQs, including 2 nulls, 1 duplicate, 1 short entry.
|
| 81 |
+
- **Output**:
|
| 82 |
+
- Cleaned Dataset: 6 FAQs in `cleaned_call_center_faqs.csv`.
|
| 83 |
+
- Cleanup Stats: “Cleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformed”.
|
| 84 |
+
- Plot: Processing Time (Ingestion: 50ms, Cleaning: 30ms, Output: 10ms), Cleanup Stats (Nulls: 2, Duplicates: 1, Short: 1, Malformed: 0).
|
| 85 |
|
| 86 |
+
## Technical Details
|
| 87 |
|
| 88 |
+
**Stack**:
|
| 89 |
+
- **Pandas**: Data wrangling and preprocessing for call center CSVs.
|
| 90 |
+
- **Gradio**: Interactive UI for real-time data preprocessing demos.
|
| 91 |
+
- **Matplotlib**: Performance visualization with bar charts.
|
| 92 |
+
- **FastAPI Compatibility**: Designed with API-driven preprocessing in mind, leveraging your experience with FastAPI for scalable deployments.
|
| 93 |
|
| 94 |
+
**Free Tier Optimization**: Lightweight with CPU-only dependencies, no GPU required.
|
| 95 |
|
| 96 |
+
**Extensibility**: Ready for integration with RAG/CAG pipelines, and cloud deployments on AWS Lambda or Azure Functions.
|
| 97 |
|
| 98 |
+
## Purpose
|
| 99 |
|
| 100 |
+
This demo showcases expertise in data preprocessing for AI-driven CX automation, focusing on call center data quality. Built on over 5 years of experience in AI, data engineering, and enterprise-grade deployments, it demonstrates the power of Pandas-based data cleaning for RAG/CAG pipelines, making it ideal for advanced CX solutions in call center environments.
|
| 101 |
|
| 102 |
+
## Latest Update
|
| 103 |
|
| 104 |
+
**Status Update**: Placeholder update - January 01, 2025 📝
|
| 105 |
+
- Placeholder update text.
|
| 106 |
|
| 107 |
+
## Future Enhancements
|
| 108 |
|
| 109 |
+
- **Real-Time Streaming**: Add support for real-time data streaming from Kafka for live preprocessing.
|
| 110 |
+
- **FastAPI Deployment**: Expose preprocessing pipeline via FastAPI endpoints for production-grade use.
|
| 111 |
+
- **Advanced Validation**: Implement stricter data validation rules using machine learning-based outlier detection.
|
| 112 |
+
- **Cloud Integration**: Enhance compatibility with AWS Glue or Azure Data Factory for enterprise data pipelines.
|
| 113 |
|
| 114 |
+
**Website**: https://ghostainews.com/
|
| 115 |
+
**Discord**: https://discord.gg/BfA23aYz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|