Spaces:
Runtime error
Runtime error
| from dataclasses import dataclass, field | |
| class EvalArguments: | |
| model_name_or_path: str = field( | |
| default="CohereForAI/aya-expanse-8b", metadata={"help": "Name to a huggingface native pretrained model or path to a model on disk."}) | |
| model_pretrained_lora_weights: str = field( | |
| default=None, metadata={"help": "Path to a checkpoint directory."}) | |
| output_filepath: str = field( | |
| default="rewards_examples_idan_mini.json", metadata={"help": "Path to the decode result or to a dir containing such files."}) # ADD output filepath | |
| result_filename: str = field( | |
| default=None, metadata={"help": "The path to the result json file. If not provided, will automatically create one. "}) | |
| per_device_batch_size: int = field( | |
| default=12, metadata={"help": "The path to the output json file."}) | |
| flash_attn: bool = field(default=False, metadata={"help": "If True, uses Flash Attention."}) | |
| bfloat16: bool = field( | |
| default=False, metadata={"help": "If True, uses bfloat16. If lora and four_bits are True, bfloat16 is used for the lora weights."}) | |
| # peft / quantization | |
| use_lora: bool = field(default=False, metadata={"help": "If True, uses LoRA."}) | |
| load_in_4bit: bool = field(default=False, metadata={"help": "If True, uses 4-bit quantization."}) | |
| load_in_8bit: bool = field(default=False, metadata={"help": "If True, uses 8-bit quantization."}) | |
| # reward model specific args | |
| reward_output_fmt: str = field(default=None, metadata={"help": "If 0, takes the softmax-ed output at index 0. If 1-0, takes the softmax-ed output at index 1 - index 0. Otherwise, just takes the raw output."}) | |
| soft_preference: bool = field(default=False, metadata={"help": "If True, uses soft preference."}) | |
| apply_sigmoid_to_reward: bool = field(default=False, metadata={"help": "If True, applies sigmoid to the reward."}) | |
| transformer_cache_dir: str = field( | |
| default=None, | |
| metadata={ | |
| "help": "Path to a directory where transformers will cache the model. " | |
| "If None, transformers will use the default cache directory." | |
| },) | |
| use_fast_tokenizer: bool = field( | |
| default=True, | |
| metadata={ | |
| "help": "Use fast tokenizer if True. " | |
| "Fast LLaMA tokenizer forces protobuf downgrade to 3.20.3. " | |
| "Use fast tokenizer only if you can live with that." | |
| }, | |
| ) | |
| trust_remote_code: bool = field(default=False, metadata={"help": "If True, enables unpickling of arbitrary code in AutoModelForCausalLM#from_pretrained."}) | |
| def __post_init__(self): | |
| # separate multiple model names or paths by comma | |
| if self.model_name_or_path is not None: | |
| self.model_name_or_path = self.model_name_or_path.split(',') | |
| # if loading 1 model, convert to string like normal | |
| if len(self.model_name_or_path) == 1: | |
| self.model_name_or_path = self.model_name_or_path[0] | |