Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,54 +1,60 @@
|
|
| 1 |
from fastapi import FastAPI, HTTPException, Depends
|
| 2 |
-
from fastapi.responses import StreamingResponse
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from io import BytesIO
|
| 5 |
from diffusers import OnnxStableDiffusionPipeline
|
| 6 |
from huggingface_hub import snapshot_download
|
| 7 |
from PIL import Image
|
| 8 |
import os
|
|
|
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
class ImageRequest(BaseModel):
|
| 18 |
-
prompt: str
|
| 19 |
-
num_inference_steps: int = 50
|
| 20 |
-
guidance_scale: float = 7.5
|
| 21 |
-
|
| 22 |
-
async def load_pipeline():
|
| 23 |
-
"""Loads the ONNX Stable Diffusion pipeline from Hugging Face Hub using snapshot_download."""
|
| 24 |
global pipeline
|
| 25 |
if pipeline is None:
|
| 26 |
try:
|
|
|
|
| 27 |
local_model_path = snapshot_download(
|
| 28 |
repo_id=repo_id,
|
| 29 |
-
local_dir=
|
| 30 |
-
allow_patterns=
|
| 31 |
)
|
| 32 |
|
| 33 |
pipeline = OnnxStableDiffusionPipeline.from_pretrained(
|
| 34 |
-
|
| 35 |
provider="CPUExecutionProvider", # Or "CUDAExecutionProvider" if you have GPU
|
|
|
|
| 36 |
)
|
| 37 |
-
print(f"ONNX Stable Diffusion pipeline loaded successfully from {
|
| 38 |
|
| 39 |
except Exception as e:
|
| 40 |
print(f"Error loading ONNX pipeline using snapshot_download: {e}")
|
| 41 |
raise HTTPException(status_code=500, detail=f"Failed to load ONNX Stable Diffusion pipeline using snapshot_download: {e}")
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
async def get_pipeline():
|
| 45 |
"""Dependency to ensure pipeline is loaded before endpoint is called."""
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
async def startup_event():
|
| 50 |
-
"""Loads the pipeline on startup."""
|
| 51 |
-
await load_pipeline()
|
| 52 |
|
| 53 |
@app.post("/generate-image/")
|
| 54 |
async def generate_image(request: ImageRequest, pipeline_dep: OnnxStableDiffusionPipeline = Depends(get_pipeline)):
|
|
@@ -64,15 +70,118 @@ async def generate_image(request: ImageRequest, pipeline_dep: OnnxStableDiffusio
|
|
| 64 |
|
| 65 |
# Convert PIL Image to bytes for streaming response
|
| 66 |
img_byte_arr = BytesIO()
|
| 67 |
-
image.save(img_byte_arr, format=
|
| 68 |
img_byte_arr = img_byte_arr.getvalue()
|
| 69 |
|
| 70 |
-
return StreamingResponse(content=iter([img_byte_arr]), media_type="image/
|
| 71 |
|
| 72 |
except Exception as e:
|
| 73 |
print(f"Error during image generation: {e}")
|
| 74 |
raise HTTPException(status_code=500, detail=f"Image generation failed: {e}")
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
if __name__ == "__main__":
|
| 77 |
import uvicorn
|
| 78 |
-
uvicorn.run(app, host="0.0.0.0", port=
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException, Depends
|
| 2 |
+
from fastapi.responses import StreamingResponse, Response, HTMLResponse
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from io import BytesIO
|
| 5 |
from diffusers import OnnxStableDiffusionPipeline
|
| 6 |
from huggingface_hub import snapshot_download
|
| 7 |
from PIL import Image
|
| 8 |
import os
|
| 9 |
+
from contextlib import asynccontextmanager
|
| 10 |
|
| 11 |
+
repo_id = "black-forest-labs/FLUX.1-dev-onnx" # Hugging Face repo ID
|
| 12 |
+
local_dir = "sd_onnx_models" # Subdirectory for models
|
| 13 |
+
pipeline = None # Initialize pipeline outside lifespan
|
| 14 |
|
| 15 |
+
@asynccontextmanager
|
| 16 |
+
async def lifespan(app: FastAPI):
|
| 17 |
+
"""
|
| 18 |
+
Lifespan event handler to load the ONNX Stable Diffusion pipeline on startup and unload on shutdown.
|
| 19 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
global pipeline
|
| 21 |
if pipeline is None:
|
| 22 |
try:
|
| 23 |
+
allow_patterns=["*.onnx", "*.json", "vae/*.onnx"] # Specify necessary file patterns (adjust as needed)
|
| 24 |
local_model_path = snapshot_download(
|
| 25 |
repo_id=repo_id,
|
| 26 |
+
local_dir=local_dir, # Specify local_dir to ensure files are placed there
|
| 27 |
+
allow_patterns=allow_patterns
|
| 28 |
)
|
| 29 |
|
| 30 |
pipeline = OnnxStableDiffusionPipeline.from_pretrained(
|
| 31 |
+
local_dir, # Use the local path from snapshot_download
|
| 32 |
provider="CPUExecutionProvider", # Or "CUDAExecutionProvider" if you have GPU
|
| 33 |
+
revision="onnx" # Explicitly specify ONNX revision when loading from local path
|
| 34 |
)
|
| 35 |
+
print(f"ONNX Stable Diffusion pipeline loaded successfully from {repo_id} (ONNX revision) using snapshot_download from: {local_model_path}")
|
| 36 |
|
| 37 |
except Exception as e:
|
| 38 |
print(f"Error loading ONNX pipeline using snapshot_download: {e}")
|
| 39 |
raise HTTPException(status_code=500, detail=f"Failed to load ONNX Stable Diffusion pipeline using snapshot_download: {e}")
|
| 40 |
+
yield # App starts up after this point
|
| 41 |
+
pipeline = None # Optionally unload pipeline on shutdown (if needed for resource management)
|
| 42 |
+
print("ONNX Stable Diffusion pipeline unloaded.")
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
app = FastAPI(lifespan=lifespan) # Register lifespan function
|
| 46 |
+
|
| 47 |
+
class ImageRequest(BaseModel):
|
| 48 |
+
prompt: str
|
| 49 |
+
num_inference_steps: int = 50
|
| 50 |
+
guidance_scale: float = 7.5
|
| 51 |
+
format: str = "png" # default format
|
| 52 |
|
| 53 |
async def get_pipeline():
|
| 54 |
"""Dependency to ensure pipeline is loaded before endpoint is called."""
|
| 55 |
+
if pipeline is None: # Check if pipeline is loaded (should be by lifespan)
|
| 56 |
+
raise HTTPException(status_code=500, detail="Pipeline not loaded. Startup might have failed.")
|
| 57 |
+
return pipeline
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
@app.post("/generate-image/")
|
| 60 |
async def generate_image(request: ImageRequest, pipeline_dep: OnnxStableDiffusionPipeline = Depends(get_pipeline)):
|
|
|
|
| 70 |
|
| 71 |
# Convert PIL Image to bytes for streaming response
|
| 72 |
img_byte_arr = BytesIO()
|
| 73 |
+
image.save(img_byte_arr, format=request.format.upper()) # Use format from request
|
| 74 |
img_byte_arr = img_byte_arr.getvalue()
|
| 75 |
|
| 76 |
+
return StreamingResponse(content=iter([img_byte_arr]), media_type=f"image/{request.format}") # Use format from request
|
| 77 |
|
| 78 |
except Exception as e:
|
| 79 |
print(f"Error during image generation: {e}")
|
| 80 |
raise HTTPException(status_code=500, detail=f"Image generation failed: {e}")
|
| 81 |
|
| 82 |
+
@app.get("/", response_class=HTMLResponse)
|
| 83 |
+
def index():
|
| 84 |
+
return """
|
| 85 |
+
<!DOCTYPE html>
|
| 86 |
+
<html>
|
| 87 |
+
<head>
|
| 88 |
+
<title>FastAPI Image Generation Demo</title>
|
| 89 |
+
<style>
|
| 90 |
+
body { font-family: Arial, sans-serif; }
|
| 91 |
+
.container { width: 80%; margin: auto; padding-top: 20px; }
|
| 92 |
+
h1 { text-align: center; }
|
| 93 |
+
.form-group { margin-bottom: 15px; }
|
| 94 |
+
label { display: block; margin-bottom: 5px; font-weight: bold; }
|
| 95 |
+
input[type="text"], input[type="number"], textarea, select { width: 100%; padding: 8px; box-sizing: border-box; margin-bottom: 10px; border: 1px solid #ccc; border-radius: 4px; }
|
| 96 |
+
textarea { height: 100px; }
|
| 97 |
+
button { padding: 10px 15px; border: none; color: white; background-color: #007bff; border-radius: 4px; cursor: pointer; }
|
| 98 |
+
button:hover { background-color: #0056b3; }
|
| 99 |
+
img { display: block; margin-top: 20px; max-width: 500px; } /* Adjust max-width as needed */
|
| 100 |
+
#image-container { display: none; margin-top: 20px; text-align: center; } /* Initially hidden container */
|
| 101 |
+
</style>
|
| 102 |
+
</head>
|
| 103 |
+
<body>
|
| 104 |
+
<div class="container">
|
| 105 |
+
<h1>FastAPI Image Generation Demo</h1>
|
| 106 |
+
<div class="form-group">
|
| 107 |
+
<label for="prompt">Text Prompt:</label>
|
| 108 |
+
<textarea id="prompt" rows="4" placeholder="Enter text prompt here"></textarea>
|
| 109 |
+
</div>
|
| 110 |
+
<div class="form-group">
|
| 111 |
+
<label for="num_inference_steps">Number of Inference Steps:</label>
|
| 112 |
+
<input type="number" id="num_inference_steps" value="50">
|
| 113 |
+
</div>
|
| 114 |
+
<div class="form-group">
|
| 115 |
+
<label for="guidance_scale">Guidance Scale:</label>
|
| 116 |
+
<input type="number" step="0.5" id="guidance_scale" value="7.5">
|
| 117 |
+
</div>
|
| 118 |
+
<div class="form-group">
|
| 119 |
+
<label for="format">Format:</label>
|
| 120 |
+
<select id="format">
|
| 121 |
+
<option value="png" selected>PNG</option>
|
| 122 |
+
<option value="jpeg">JPEG</option>
|
| 123 |
+
</select>
|
| 124 |
+
</div>
|
| 125 |
+
<div class="form-group">
|
| 126 |
+
<button onclick="generateImage()">Generate Image</button>
|
| 127 |
+
</div>
|
| 128 |
+
<div id="image-container">
|
| 129 |
+
<img id="image" src="#" alt="Generated Image" style="max-width: 80%; height: auto;">
|
| 130 |
+
</div>
|
| 131 |
+
</div>
|
| 132 |
+
<script>
|
| 133 |
+
async function generateImage() {
|
| 134 |
+
const prompt = document.getElementById('prompt').value;
|
| 135 |
+
const num_inference_steps = document.getElementById('num_inference_steps').value;
|
| 136 |
+
const guidance_scale = document.getElementById('guidance_scale').value;
|
| 137 |
+
const format = document.getElementById('format').value;
|
| 138 |
+
const imageElement = document.getElementById('image');
|
| 139 |
+
const imageContainer = document.getElementById('image-container');
|
| 140 |
+
imageElement.style.display = 'none'; // Hide previous image while loading
|
| 141 |
+
imageContainer.style.display = 'none'; // Hide container too
|
| 142 |
+
|
| 143 |
+
try {
|
| 144 |
+
const response = await fetch('/generate-image/', {
|
| 145 |
+
method: 'POST',
|
| 146 |
+
headers: {
|
| 147 |
+
'Content-Type': 'application/json'
|
| 148 |
+
},
|
| 149 |
+
body: JSON.stringify({
|
| 150 |
+
prompt: prompt,
|
| 151 |
+
num_inference_steps: parseInt(num_inference_steps),
|
| 152 |
+
guidance_scale: parseFloat(guidance_scale),
|
| 153 |
+
format: format
|
| 154 |
+
})
|
| 155 |
+
});
|
| 156 |
+
|
| 157 |
+
if (!response.ok) {
|
| 158 |
+
throw new Error(`HTTP error! status: ${response.status}`);
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
const blob = await response.blob();
|
| 162 |
+
const imageUrl = URL.createObjectURL(blob);
|
| 163 |
+
imageElement.src = imageUrl;
|
| 164 |
+
imageElement.onload = () => { // Only show when image is loaded
|
| 165 |
+
imageContainer.style.display = 'block'; // Show image container
|
| 166 |
+
imageElement.style.display = 'block'; // Show the image
|
| 167 |
+
};
|
| 168 |
+
imageElement.onerror = () => {
|
| 169 |
+
imageElement.style.display = 'none'; // Hide image on error
|
| 170 |
+
imageContainer.style.display = 'none'; // Hide container on error
|
| 171 |
+
alert("Error loading image. Please check console for details.");
|
| 172 |
+
};
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
} catch (error) {
|
| 176 |
+
console.error("Fetch error:", error);
|
| 177 |
+
alert("Error generating image. Please check console for details.");
|
| 178 |
+
}
|
| 179 |
+
}
|
| 180 |
+
</script>
|
| 181 |
+
</body>
|
| 182 |
+
</html>
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
if __name__ == "__main__":
|
| 186 |
import uvicorn
|
| 187 |
+
uvicorn.run(app, host="0.0.0.0", port=7860, reload=True)
|